
1

MULTI-LAYERED ABSTRACTIONS FOR PERFORMANCE PORTABILITY -
LESSONS LEARNT AND CHALLENGES

Gihan Mudalige

Royal Society Industry Fellow

Reader (Associate Professor) in High Performance Computing

Department of Computer Science, University of Warwick
g.mudalige@warwick.ac.uk

Joint work with:

Istvan Reguly @ PPCU,
Kamalavasan Kamalakannan, Arun Prabhakar and others at the HPSC group @ Warwick

Neil Sandham and team @ Southampton, Dario Amirante @ Surrey,

Mike Giles @ Oxford, Paul Kelly and many more @ Imperial,

Rolls-Royce plc., NAG, UCL, STFC, IBM and many more industrial and academic collaborators.

10th December 2021 – Computing Insight UK 2021

SINGLE THREAD SPEEDUP IS DEAD – MUST EXPLOIT PARALLELISM

THE HAIL MARY PASS !

“The semiconductor industry threw the equivalent of a Hail Mary pass when it switched from making
microprocessors run faster to putting more of them on a chip - doing so without any clear notion of
how such devices would in general be programmed.”

David Patterson, University of California - Berkeley 2010

http://www.theemike.com/mikes-free-football-comic-book-hail-mary-pass/

❑ Traditional CPUs
▪ Intel, AMD, ARM, IBM
▪ multi-core (> 20 currently)
▪ Deep memory hierarchy (cache levels and RAM)
▪ longer vector units (e.g. AVX-512)

❑ GPUs
▪ NVIDIA (A100), AMD (MI200) , Intel (Xe GPUs)
▪ Many-core (> 1024 simpler SIMT cores)
▪ CUDA cores, Tensor cores
▪ Cache, Shared memory, HBM (3D stacked DRAM)

❑ Heterogeneous Processors
▪ Different core architectures over the past few years
▪ ARM big.LITTLE
▪ NVIDIA Grace.Hopper

❑ XeonPhi (discontinued)
▪ Many-core – based on simpler x86 cores
▪ MCDRAM (3D stacked DRAM)

DIVERSE HARDWARE LANDSCAPE – COMPOUNDED BY THE RACE TO EXASCALE !

❑ FPGAs
▪ Dominated by Xilinx and Intel
▪ Various configurations
▪ Low-level language / HLS tools for programming
▪ Significant energy savings

❑ DSP Processors
▪ Phytium / The Chinese Matrix2000 GPDSP accelerator

(Yet to be announced Chinese Exascale system ?)

❑ TPUs, IPUs ….

❑ Quantum ?

OpenMP,
SIMD,
CUDA, OpenCL,
OpenMP4.0, OpenACC,
SYCL/OneAPI,
HIP/ROCm,
MPI, PGAS
Task-based (e.g Legion)
and others ….

❑ Open standards (e.g OpenMP, SYCL) – so far have not been agile to catch up with changing architectures

❑ Proprietary models (CUDA, OpenACC, ROCm, OneAPI) – restricted to narrow vendor specific hardware

❑ Need different code-paths/parallelization schemes to get the best performance
❑ E.g. Coloring vs atomics vs SIMD vs MPI vs Cache-blocking tiling for unstructured mesh class of applications

❑ What about legacy codes ? There is a lot of FORTRAN code out there !

BUT .. EVEN MORE DIVERSE WAYS TO PROGRAMMING THEM !

❑ What would an Exa-scale machine architecturally look like ?

❑ Each new platform requires new performance tuning effort
▪ Deeper memory/cache hierarchies and/or shared-memory (non-coherent)
▪ Multiple (heterogeneous) memory spaces (device memory/host memory)
▪ Complex programming skills set needed to extract best performance on the newest architectures

❑ Not clear which architectural approach is likely to win in the long-term
▪ Cannot be re-coding applications for each new type of architecture or parallel system
▪ Nearly impossible for re-writing legacy codes

❑ Need to future-proof applications for their continued performance and portability
▪ If not – significant loss of investment : applications will not be able to make use of emerging architectures

SOFTWARE CHALLENGE – A MOVING TARGET

❑ Motivation

❑ Raising the Level of Abstraction

❑ OP-DSLs

❑ Codes and Projects using OP2/OPS

❑ Future Plans – ExCALIBUR

❑ Challenges and Lessons Learnt

❑ Conclusions

OUTLINE

THE LEVEL OF ABSTRACTION - CLIMBING THE ANALYSIS HILL AND GENERATING CODE

❑ Classical compiler have two halves : Analysis and Synthesis
❑ The higher you can get to (in analysis) the bigger the space of code synthesis possibilities
❑ If you start at a lower level – climbing higher is a struggle

▪ Difficult to ensure optimizations are safe (e.g. data races, pointer aliasing)
▪ Sometimes, impossible to extract richer information (e.g. data partitioning/layouts, memory spaces)
▪ Limits the optimizations possible

❑ Compounding the issue - the way code is written by (most) people will not be easy to analyse !

Syntax

Semantics (Types, Scope, ..)

Pointer analysis

Call graph

Dependence

Class hierarchy

Polyhedra

……
……

Parallelization

Tiling

Loop nest ordering

Instruction Selection / Scheduling, Register Allocation

……

……

Vectorization

Code motion optimizations

C/C++, Fortran, Java, C#

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity? Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London)

THE LEVEL OF ABSTRACTION

❑ If you can start higher
▪ Results in a bigger space of code synthesis possibilities
▪ Could they give the same (or better) performance as code written by hand ?
▪ Could these possibilities include targeting different (parallel) architectures ?

❑ How can you start higher ?

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity? Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London)

C/C++, Fortran, Java, C#

DOMAIN SPECIFIC ABSTRACTIONS

❑ Rise the abstraction to a specific domain of variability
❑ Concentrate on a narrower range (class) of computations

▪ Computation-Communications skeletons - Structured-mesh, Unstructured-mesh, … 7 Dwarfs [Colella 2004] ?
▪ (higher) Numerical Method - PDEs, FFTs, Monte Carlo …
▪ (even higher) Specify application requirements, leaving implementation to select radically different solution approaches

C/C++, Fortran, Java, C#

Comp-comm skeletons

Numerical Method

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity? Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London)

DOMAIN SPECIFIC ABSTRACTIONS

❑ If you get the abstraction right, then:
▪ Can isolate numerical methods from mapping to hardware
▪ Can reuse a body of optimizations/code generation expertise/techniques for this class (or numerical method)

to match target hardware

C/C++, Fortran, Java, C#

Comp-comm skeletons

Numerical Method

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity? Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London)

OP-DSL

❑ Separation of Concerns (… back in 2010 !)
▪ Specify the problem – not the implementation
▪ Leverage the best implementation for the target context
▪ Can be many contexts - hardware, programming model, parameters etc.

❑ Domain Specific API
▪ Get application scientists to pose the solution using domain specific constructs – provided by the API
▪ Handling data done only using API – contract with the user

❑ Restrict writing code that is difficult (for the compiler) to reason about and optimize
▪ “OP2 and OPS are a straightjacket” – Mike Giles
▪ Build in safe guards so that user cannot write bad code !

❑ Implementation of the API left to a lower level
▪ Target implementation to hardware – can use best optimizations
▪ Automatically generate implementation from specification for the context
▪ Exploit domain knowledge for better optimisations - reuse what we know is best for each context

HIP/ROCm

SYCL

APPLICATION DEVELOPMENT

OpenCL

MPI

Source-to-Source translator (Python / Clang-LLVM)

OP2/OPS Platform Specific
Optimized Backend libraries

Conventional Compiler (e.g. icc, nvcc, pgcc, clang, XL, Cray) +
compiler flags

Hardware

Link

OpenMP

Application OP2 / OPS Application (Embedded API in Fortran/C/C++)

Modified Platform Specific
OP2/OPS Application

Platform Specific Optimized
Application Files

Mesh
(hdf5)

Platform Specific
Binary Executable

CUDA

SIMD/Vectorized

Sequential for testing

OP2/OPS CODE GENERATION

Fortran

application

C/C++

application

OP2/OPS

Fortran API

OP2/OPS

C/C++ API

Language
agnostic

common IR

CUDA Fortran

OpenMP

OpenACC

Paralleization Templates for Fortran

CUDA

OpenMP

SYCL/OneAPI

Paralleization Templates for C/C++

Fortran

parallel code

C/C++

parallel code
C/C++ elemental Kernel

transformations
clang/libtooling

MPI +
CUDA, OpenMP,

SYCL/OneAPI, HIP

……

MPI +
CUDA Fortran,

OpenMP

……Python+fparser2

Python+clang

Fortran elemental
Kernel transformations
flang/mlir(?)

❑ Simplest Code generation / translation
▪ Intermediate representation is simply the loop descriptions + elemental kernels
▪ Generated parallel code can be viewed and understood by a human !

❑ Multi-layered – no opaque / black box layers
❑ Built with well supported / long-term technologies - Python, Clang/libtooling, [flang, mlir]

CODE SYNTHESIS POSSIBILITIES

❑ Auto-parallelization
▪ Target different hardware and programming models (SIMD, SIMT, SPMD, Task parallelism?)
▪ Sophisticated orchestration of parallelizations – handle data races to match the context

❑ Full responsibility for data layout and movement
▪ Data Layout – SoA - AoS , distributed memory partitioning, local block partitioning
▪ Data movement – MPI halo creation and exchange, host/device data movement (memory spaces)
▪ Communication avoidance – computation vs communication balance, cache-blocking tiling

❑ Load-balancing
▪ Across heterogeneous processor architectures

❑ More ..
▪ Automatic checkpointing
▪ Runtime compilation (JIT)
▪ Insitu visualization ?
▪ Uncertainty quantification ?

PRODUCTION APPS - EPSRC PROSPERITY PARTNERSHIP – ASIMOV PROJECT

❑ Virtual certification of Gas Turbine Engines
❑ Main consortium with partners – EPCC, Warwick, Oxford, Cambridge, Bristol and Rolls-Royce plc.

100
93

85
78

64

100
93

88
80

0

20

40

60

80

100

P
a

ra
ll

el

E
ff

ic
in

cy
 (

%
)

No of Nodes

Rows 1-10 Annulus Coupled runs using JM76

OP2

OPLUS

77 115 171 256 512

Grand Challenge : Rig250 – Compressor from DLR

▪ 1-10 passage full annulus

▪ Aim: 1 Rev in 24 hours (ARCHER2)

▪ Achieved : 1 Rev in 11 hours (ARCHER2 32k cores / 256 nodes)

▪ Predicted : 1 Rev in less than 5 hours (408 V100 GPUs / ~100 nodes)

1 Rev in less than 6 hours (168 A100 GPUs / ~ 64 nodes)

less than ½ or ¼ th of the ARCHER2 machine size

65536 cores

PRODUCTION APPS – OPENSBLI (UNI. OF SOUTHAMPTON)

❑ Compressible Navier-Stockes solver
▪ With shock capturing WENO/TENO
▪ 4th order Finite Difference
▪ Single/double precision

❑ OpenSBLI is a Python framework
▪ Write equations in SymPy expressions
▪ OPS code generated

Jacobs, C. T., Jammy, S. P., Sandham N. D. (2017). OpenSBLI: A framework for the automated derivation and parallel
execution of finite difference solvers on a range of computer architectures. Journal of Computational Science,
18:12-23, DOI: 10.1016/j.jocs.2016.11.001

OpenSBLI
https://opensbli.github.io/

OPENSBLI ON ARHCER2

❑ Taylor – Green Vortex Problem – ARCHER2 benchmark
▪ Strong Scaling - 10243 Mesh
▪ Double precision
▪ Speedup calculated from 1000 iterations – includes start up time.

From recent benchmarking runs done by

Andrew Turner and the ExCALIBUR

Benchmarking team (Oct 2021)

NEW PARALLEL PROGRAMMING MODELS / LANGUAGES - OP2 GENERATING SYCL

I.Z. Reguly, A.M.B. Owenson, A. Powell, S.A. Jarvis, and G.R. Mudalige, Under the Hood of SYCL – An Initial Performance Analysis With an Unstructured-mesh CFD Application, International Supercomputing Conference
(ISC 2021), June 2021
I.Z. Reguly. Performance of DPC++ on Representative Structured/Unstructured Mesh Applications. Intel DevSummit at SC21

14.47

9.46

15.01
17.23

26.60

7.41
4.87

7.43
10.31

13.64
12.31

0

5

10

15

20

25

30

MPI MPI+SIMD OpenMP SYCL scalar SYCL vec

R
u

n
ti

m
e

(s
)

Cascade Lake Ice Lake Iris XE NVIDIA P100 NVIDIA V100 AMD

Radeon VII

❑MG-CFD – Multigrid CFG MiniAPP:

▪ NASA Rotor37, 4 multigrid levels, 8M edges

▪ Generate Parallelization using OP2

▪ Intel compilers - from oneAPI

▪ Intel MPI - for MPI, SIMD, OpenMP, MPI+OpenMP

❑GPUs – NVIDIA P100 and V100, AMS Radion VII, Intel Iris XE MAX

❑CPUs – single socket only to avoid NUMA issues:

▪ Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, 16 cores

▪ Intel(R) Xeon(R) Platinum 8360Y @ 2.40 GHz, 36 cores

❑SYCL compilers - Intel OneAPI 2021.4 and HipSYCL

HipSYCL

ONEAPI/SYCL

❑ OP2 and OPS can generate SYCL paralleizations
▪ Structured-mesh / Regular applications have good performance portability
▪ But various execution strategies needed for unstructured-mesh (irregular) applications to avoid data races

❑ Key challenge: understanding mapping from SYCL code (SIMT abstraction) to the hardware
▪ Reasonably trivial for GPU architectures, where the hardware is a good fit for SIMT
▪ Still problematic for SIMD architectures (such as CPUs)
▪ OneAPI is quite aggressive about vectorization, and the sub-group API really helps with mapping to SIMD.
▪ Performance improving.

❑ SYCL a much more productive alternative to OpenCL, and performance is improving rapidly
▪ But the challenges in terms of performance productivity remain
▪ Need multiple code paths for different architectures – e.g. Coloring vs Atomics

EXOTIC OPTIMIZATIONS - COMMUNICATION AVOIDING ALGORITHMS

❑ With MPI communication

▪ Standard OP2 redundant execution over one halo level
▪ Less computations per node

op_par_loop(adt_calc, "adt_calc", cells, …) // MPI Comm
op_par_loop(res_calc, "res_calc", edges, …) // MPI Comm
op_par_loop(bres_calc,"bres_calc", bedges,…) // MPI Comm
op_par_loop(update, "update", cells,…) // MPI Comm

❑ Without MPI Communication

▪ Extend halo by one further level
▪ Redundant compute over both levels
▪ MPI Comm now avoided – but more computations per node

loop_chain_start {
// do all the MPI comms here – with 1 large message per neighbour
op_par_loop(adt_calc, "adt_calc", cells, …);

op_par_loop(res_calc, "res_calc", edges, …);

op_par_loop(bres_calc,"bres_calc", bedges,…);

op_par_loop(update, "update", cells,…);

} loop_chain_end

DIRECT SOLVERS - MULTI-DIM TRIDIAGONAL SOLVERS ON CLUSTERS OF GPUS

Weak Scaling : 5123 per Node

Strong Scaling : 512× 512 × 8192

ARCHER2

Weak Scaling : 5123 per GPU

Strong Scaling : 512× 512 × 2048

pcr – parallel cyclic reduction (PCR) solver

Jac – Jacobi iterative solver

AG – All Gather

GS – Gather Scatter

HC – host copy

GD – GPU direct

Cirrus – GPU Cluster

G.D. Balogh, T. Flynn, S. Laizet, G.R. Mudalige, I.Z. Reguly. Scalable

Many-core Algorithms for Tridiagonal Solvers, in 2021 Computing in

Science & Engineering, vol. , no. 01, pp. 1-1, 5555.

doi: 10.1109/MCSE.2021.3130544

STENCILS ON FPGAS

3D - Reverse Time Migration (RTM) – Forward Pass

❑ Competitive runtimes with GPUs
❑ Even when runtime is inferior to the GPU we get significant energy savings (e.g. over 2x for for the RTM app)

K. Kamalakkannan, G.R. Mudalige, I.Z. Reguly, S.A. Fahmy, High-Level FPGA Accelerator Design for Structured-Mesh-Based Explicit Numerical Solvers, in 2021 IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2021), Portland Oregon, USA, 2021 pp. 1087-1096. doi: 10.1109/IPDPS49936.2021.00117

https://doi.ieeecomputersociety.org/10.1109/IPDPS49936.2021.00117

MULTI-DIM TRIDIAGONAL SOLVERS ON FPGAS

Kamalavasan Kamalakkannan, Istvan Z. Reguly, Suhaib A. Fahmy, and Gihan R. Mudalige. High Throughput Multidimensional
Tridiagonal Systems Solvers on FPGAs (2021) – Under Review

NON-TRADITIONAL ARCHITECTURES - MULTI-DIM TRIDIAGONAL SOLVERS ON FPGAS

❑ Stochastic Local Volatility (SLV) model application - high throughput batched implementation on Xilinx FPGAs

❑ Competitive runtimes with GPUs
❑ FPGA solution is over 30% more energy efficient for large batch solves over the GPU

Kamalavasan Kamalakkannan, Istvan Z. Reguly, Suhaib A. Fahmy, and Gihan R. Mudalige. High Throughput Multidimensional
Tridiagonal Systems Solvers on FPGAs (2021) – Under Review

OTHER PROJECTS USING OP2/OPS

❑ ETH Zurich – BASEMENT code (Basic Simulation Environment for Computation of Environmental Flows
and Natural Hazard Simulations)
▪ Flood forecast and mitigation, River morphodynamics, Design of hydraulic structures
▪ Finite volume discretisation, cell centred
▪ Targeting OP2 for GPU and multi-core parallelisation

❑ STFC – HiLeMMS project (High-Level Mesoscale Modelling System):
▪ high-level abstraction layer over OPS for the solution of the Lattice Boltzmann method
▪ Adaptive mesh refinement - Chombo (Lawrence Berkeley National Labs)

❑ University of Nottingham – CFD code development with OPS
▪ Simulation of Turbomachinery flows
▪ Implicit solvers using OPS’s Tridiagonal Solver API

CURRENT WORK AND FUTURE WORK - EXCALIBUR PROJECT

❑ CCP – Turbulence
▪ Direct solver libraries – Tri-, penta-, 7-, 9-, 11 diagonal, multi-dimensional solvers
▪ Integrate directsolver libraries to be called within OPS
▪ OpenSBLI type high-level (Python) framework for XCompact3D – High Order FD framework

❑ ExCALIBUR Phase 1B – Turbulence at the Exascale
▪ Imperial, Warwick, Newcastle, Southampton, Cambridge, STFC collaboration | UKTC and UKCTRF Communities
▪ Xcompact3D and Wind Energy, OpenSBLI and Green Aviation, uDALES and Air Quality, SENGA+ and Net-Zero Combustion
▪ Extending OPS capability – robust code-gen tools and parallel transformations | support future-proof code development
▪ UQ, I/O, Coupling and Visualization
▪ Machine Learning Algorithms for Turbulent Flow

❑ UK AEA Mini-Apps Project
▪ Collaboration with University of York
▪ Developing Prototype miniApps for UKAEA workload
▪ Investigate / advise on performance portability techniques and current state-of-the-art.

❑ Converting legacy code is time consuming
▪ Large code base,
▪ Defunct 3rd party libs,
▪ Fortran 77 or older !

❑ Difficult to validate code
▪ New code giving the same accurate scientific output ?
▪ What code should I certify ? High-level code/generated code ?
▪ Difficult to convince users to use new code - fear of an opaque compiler / intermediate representation / black box !

❑ Incremental conversion – loop by loop
▪ Simpler than CUDA, but more difficult than OpenACC/OpenMP
▪ Automated conversion ?

❑ Changing user requirements
▪ Wanting to use a DSL for doing things beyond what it was intended for !
▪ Asking for “back-doors” / “escape hatches” -- leads to poor performance

CHALLENGES – COST / EFFORT OF CONVERSION

❑ Tools not entirely mature
▪ Currently source-to-source with Python
▪ Pushing clang/LLVM source-to-source to do what we want
▪ What about Fortran - may be F18/Flang ?
▪ MLIR appearing to give some advance capabilities – see ExCALIBUR xDSL project (Tobias Grosser, Paul Kelly et al.)

❑ Code-generation for more exotic architectures – e.g. FPGAs
▪ Large design space
▪ Complex source transformations

❑ Maintainable/long term source-to-source technologies
▪ Domain Scientists not having expertise to understand / maintain DSLs

CHALLENGES – CODE-GENERATION

❑ Currently purely done via academic and (small/short term) industrial funding

❑ Long term funding and maintenance
▪ Once established probably will not be different to any other classical library
▪ Will require compiler expertise to maintain code generation tools

❑ What DSL to choose ?
▪ Re-use technologies / DSLs – especially code-gen tools (best not to reinvent !)

❑ Skills Gap
▪ Programme in C/C++/Fortran (at a minimum)
▪ Knowledge of compilers / code-generation
▪ Compete for applicants – Communicate what we do better | impact of HPC / Computational Sciences
▪ Salary 

▪ Contracts 

CHALLENGES – WHO MAINTAINS THE DSL, WHAT DSL TO CHOOSE ?

C/C++, Fortran,

Motifs / Parallel patterns

Numerical Method

FeniCS, Firedrake,

PyFR, OpenSBLI, Devito

OP2 / OPS

Adapted from: Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity?
Keynote talk at the LCPC 2015. Paul H. J. Kelly (Imperial College London)

Kokkos, RAJA

SYCL / OneAPI

❑ FEniCS - PDE solver package - https://fenicsproject.org/
❑ Firedrake - automated system for the portable solution of PDEs

using the finite element method
https://www.firedrakeproject.org/

❑ PyFR - Python based framework for solving advection-diffusion
type problems on streaming architectures using the Flux
Reconstruction approach - http://www.pyfr.org/

❑ Devito - prototype DSL and code generation framework based
on SymPy for the design of highly optimised finite difference
kernels for use in inversion methods -
http://www.opesci.org/devito-public

❑ GungHO project - Weather modelling codes (MetOffice)
❑ STELLA – DSL for stencil codes, for solving PDEs (Metro Swiss)

❑ Liszt – Stanford University : DSL for solving mesh-based PDEs -
http://graphics.stanford.edu/hackliszt/

❑ Kokkos – C++ template library – SNL
❑ RAJA - C++ template libraries - LLNL

DSLS / HIGH-LEVEL ABSTRACTIONS GAINING TRACTION !

Separation of Concerns – One of the four pillars of ExCALIBUR

https://fenicsproject.org/
https://www.firedrakeproject.org/
http://www.pyfr.org/
http://www.opesci.org/devito-public
http://graphics.stanford.edu/hackliszt/

LESSONS LEARNT AND CONCLUSIONS

❑ Utilizing domain knowledge will expose things that the compiler does not know
▪ Iterating over the same mesh many times without change
▪ Mesh is partitioned and colourable

❑ Compilers are conservative
▪ Force it to do what you know is right for your code !

❑ Let go of the conventional wisdom that higher abstraction will not deliver higher performance
▪ Higher abstraction leads to a bigger space of code synthesis possibilities
▪ We can automatically generate significantly better code than what (most) people can (reasonably) write
▪ Do not destroy performance portability by (hand-) tuning at a very low level to a specific platform

“Fundamentals and abstractions have more staying power than the technology of the moment”

Alfred Aho and Jeffrey Ullman (Turing Award Recipients 2020)

Performance

Portability Productivity

DOWNLOADS AND MORE INFORMATION

❑ GitHub Repositories

▪ OP2 – https://github.com/OP-DSL/OP2-Common
▪ OPS – https://github.com/OP-DSL/OPS

▪ OP-DSL Webpage - https://op-dsl.github.io/

❑ Contact

Gihan Mudalige (Warwick) - g.mudalige@warwick.ac.uk
Istvan Reguly (PPCU – Hungary) - reguly.istvan@itk.ppke.hu

https://github.com/OP-DSL/OP2-Common
https://github.com/OP-DSL/OPS
https://op-dsl.github.io/
mailto:g.mudalige@warwick.ac.uk
mailto:reguly.istvan@itk.ppke.hu

ACKNOWLEDGEMENTS

❑ OP2 was part-funded by the UK Technology Strategy Board and Rolls-Royce plc. through the SILOET project, and the UK EPSRC projects
EP/I006079/1, EP/I00677X/1 on Multi-layered Abstractions for PDEs.

❑ OPS was part-funded by the UK Engineering and Physical Sciences Research Council projects EP/K038494/1, EP/K038486/1, EP/K038451/1 and
EP/K038567/1 on “Future-proof massively-parallel execution of multi-block applications” and EP/J010553/1 “Software for Emerging Architectures”
(ASEArch) project.

❑ This research is supported by Rolls-Royce plc., and by the UK EPSRC (EP/S005072/1) Strategic Partnership in ComputationalScience for
Advanced Simulation and Modelling of Engineering Systems (ASiMoV).

❑ Gihan Mudalige was supported by the Royal Society Industrial Fellowship Scheme (INF/R1/180012)

❑ Research was part-supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences.

❑ The research has been carried out within the project Thematic Research Cooperation Establishing Innovative Informatic and Info-communication
Solutions, which has been supported by the European Union and co-financed by the European Social Fund under grant number EFOP-3.6.2-16-2017-
00013.

❑ OpenSBLI was part-funded by EPSRC grants EP/K038567/1 and EP/L000261/1, and European Commission H2020 grant 671571 “ExaFLOW: Enabling
Exascale Fluid Dynamics Simulations

