

The UK Exascale Supercomputer Project

Professor Mark Parsons EPSRC Director of Research Computing

10th December 2021

THE UK EXASCALE SUPERCOMPUTER PROJECT

Professor Mark Parsons

EPCC Director Dean of Research Computing

History of the project

- In 2017 establishment of EuroHPC was announced at 60th Anniversary of Treaty of Rome celebrations in Rome
- Towards end of 2018, UK declined to join EuroHPC and relinquished its "observer" status on EuroHPC Governing Board
- Exascale Project Working Group set up in late 2018 to develop Outline Business Case for Government
 - Draft OBC first completed in late 2019
 - In parallel Supercomputing Science Case completed and published
- Since 2020 has moved into UKRI as a cross-Research Council development project within DRI Programme

Exascale Requirements from Government

- System should support both traditional Modelling & Simulation and Artificial Intelligence / Deep Learning applications
 - Technology choices may be impacted by this
 - But future technologies blur the distinction
- System should support both scientific user communities and industry users
 - A greater focus is proposed with regard to industry use for research
 - Pay-per-use production access will be supported
 - Specific support for SMEs
- System should be operational around time of EU systems 2024

The Exascale era – worldwide progress

Country or Region		Timescale	Detail	41 million cores!
Japan		2020	Fugaku : based on Fujitsu A64FX Arm proc	
China	*)	2021	Two systems in operation - next generation Sunway and Tianhe 3 system. Third system delayed.	
USA		2021 2022	Frontier : based on AMD EPYC CPU + AMD GPU Aurora : Intel Sapphire Rapids CPU + Intel Ponte Vecchio GPU	
Europe	$\langle \rangle$	2021/2 2023/4	Pre-Exascale systems in Finland / Italy + possibly Spain Two Exascale systems in 2024	

... Fugaku wears the crown

- Fugaku became the world's fastest supercomputer in June 2020 with a cores-only approach based on the Fujitsu A64FX Arm CPU
- Processor developed in long-term co-design (10 years) with Japanese computational science community led by Riken CCS
- 7,630,848 Arm CPU cores
- R_{peak} = 573.2 Petaflop/s
- R_{max} = 442.0 Petaflop/s
- Power = 29.9 MW
- Single precision > 1 Exaflop

... and ARCHER2 is finally here

- The 23 cabinet system finally opened for all users on 22nd November
- Very difficult 18 months
- Performance of the system is now good we hope users agree
- Busy from Day 1 and has remained busy

Exascale in the EU

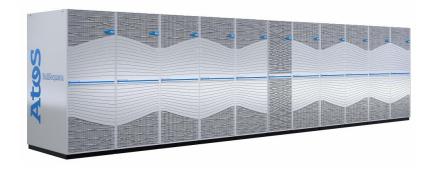
- EuroHPC Joint Undertaking established to co-fund Pre-Exascale and Exascale systems with Member States
 - Long-term plan including development of EU processor by SiPEARL
 - Funding of €7billion from 2021-2027
- Three sites chosen for pre-Exascale systems in 2019 Finland (CSC), Italy (CINECA) and Spain (BSC)
- Two pre-Exascale systems procured for Finland and Italy
 - Spanish procurement is being re-run
- Exascale systems planned for 2024/25
 - Hosting locations likely to be Germany and France

Recent EuroHPC announcements

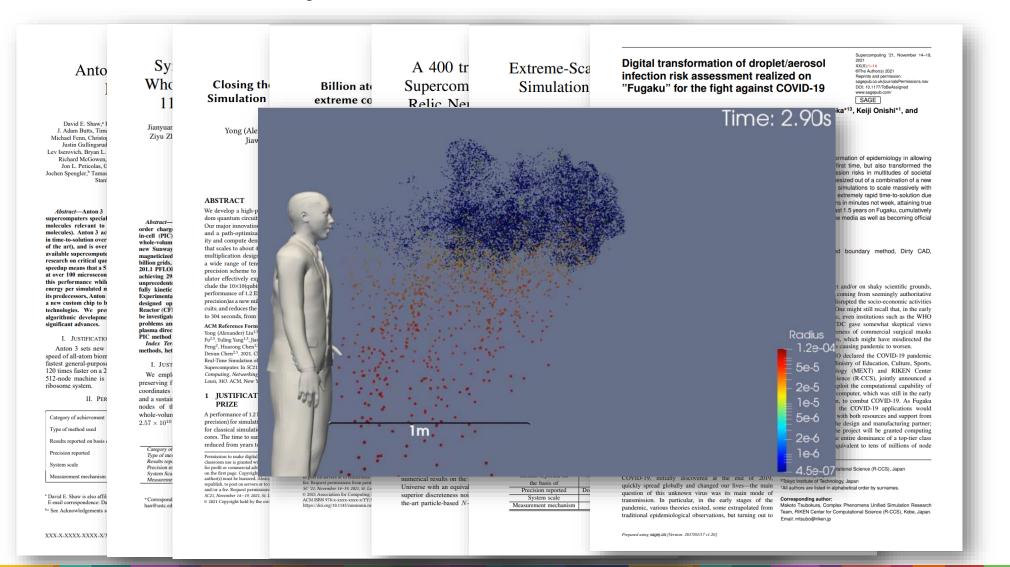
- Finland (CSC) is hosting Lumi
 - 375 Petaflops (HPL) / 550 Petaflops (Peak)
 - €145 million
 - Supplied by HPE
 - AMD EPYC CPUs + AMD GPUs
- Italy (CINECA) will host Leonardo
 - 249 Petaflops (HPL) / 324 Petaflops (Peak)
 - €120 million
 - Supplied by ATOS
 - Intel Icelake CPUs + NVIDIA A100 GPUs

More detail on Lumi

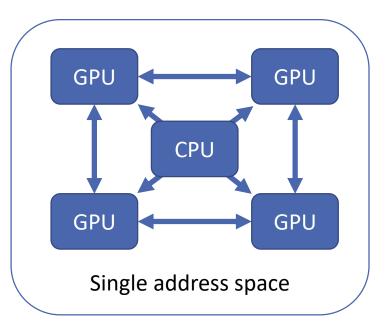
- HPE Cray EX system
 - Same platform as ARCHER2
- GPU partition
 - 2,560 nodes 1 AMD Trento CPU + 4x AMD MI250X GPUs
 - 10,240 GPUs and 16,384 cores
- CPU partition
 - 1,536 nodes 2x AMD Trento CPUs
 - 196,608 cores
- 375 PFlops (HPL) / 550 PFlops (Peak)



More detail on Leonardo

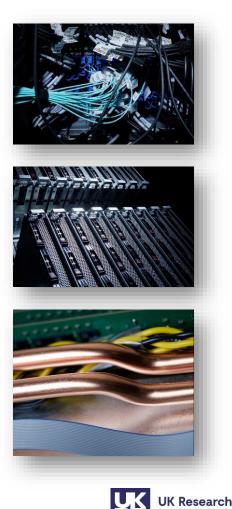

- ATOS BullSequana system
 - Two partitions "Booster" and "Data Centric"
- GPU partition (Booster) 3,456 nodes
 - 221,184 cores Intel Icelake CPUs
 - 13,824 NVIDIA A100 GPUs
- CPU partition (Data Centric) 1,536 nodes
 - 79,872 cores Intel Sapphire Rapids CPUs
 - Local NVM (DCPMM?) for data analysis
- 249 PFlops (HPL) / 324 PFlops (Peak)

Scientific impact


Provide the capability and scientists will use it

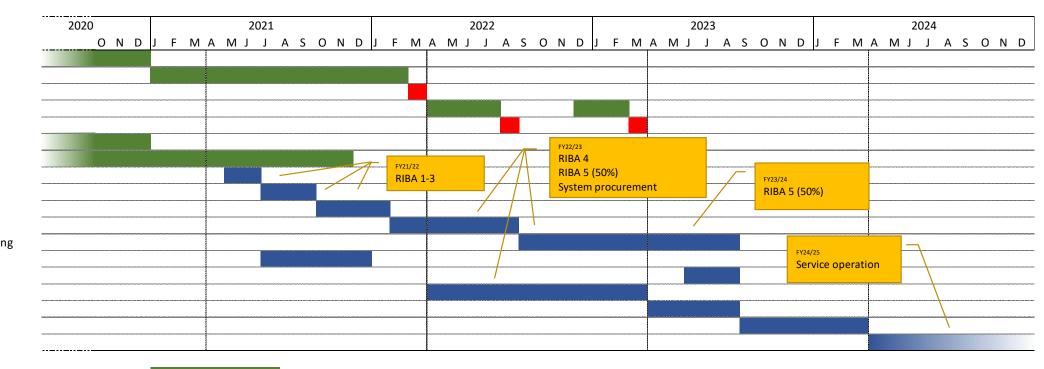
12

Technology –recent Exascale vendor briefings


- Memory is changing
 - Many Exascale blades include HBM
 - Some designs have no DRAM at all
 - But recently LPDDR5 is being mentioned more
- Four-way competition for CPUs and/or GPUs
 - Intel versus AMD versus Arm versus NVIDIA
- GPUs market is broadening
 - AMD is strongly competing with NVIDIA
- Cabinet energy densities are rocketing
 - Today's 80-100KW cabinets will be eclipsed by cabinets at 300KW+
- Multicore CPUs are also getting AI Deep Learning features

General design principles for UK Exascale Project

- 25MW system + 5MW support and cooling
- Single tightly coupled system
- Main compute power from GPU partition
 - Target 1 Exaflop/s R_{MAX}
- Remainder of space or power budget for CPU partition
 - Designed to provide attractive powerful resource for nonaccelerated codes as they transition
- Large Software Programme envisaged
 - Multiple activities Grand Challenge based to eCSE type activities
 - Lots of requirements gathering / consultation to do



Project timeline

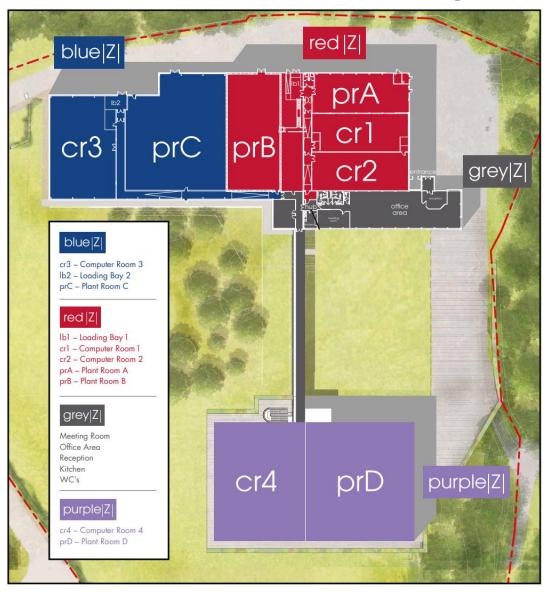
UK Exascale Supercomputer Timeline

09/12/2021

OBC Development **OBC** Finalisation **PIC Approval FBC** Finalisation FBC Approval CR4 Build 30MVA Electrical Supply upgrade Appoint feasibility team for CR4 work Feasibility study (RIBA stages 1 and 2) RIBA Stage 3 design RIBA Stage 4 detailed design and approvals RIBA Stage 5 construction and commissioning Initial vendor engagement Hosting environment testing Procurement process and contract System manufacturing Installation, testing and acceptance Exascale Service Commencement

Activities already funded by University of Edinburgh / Government and underway Activities funded via Exascale Project (not all yet funded) Latest date for key decision points

Entirely dependent on funding and UKRI prioritisation


epcc

SYSTEM HOSTING AND OUTLINE DESIGNS

Professor Mark Parsons

EPCC Director Dean of Research Computing

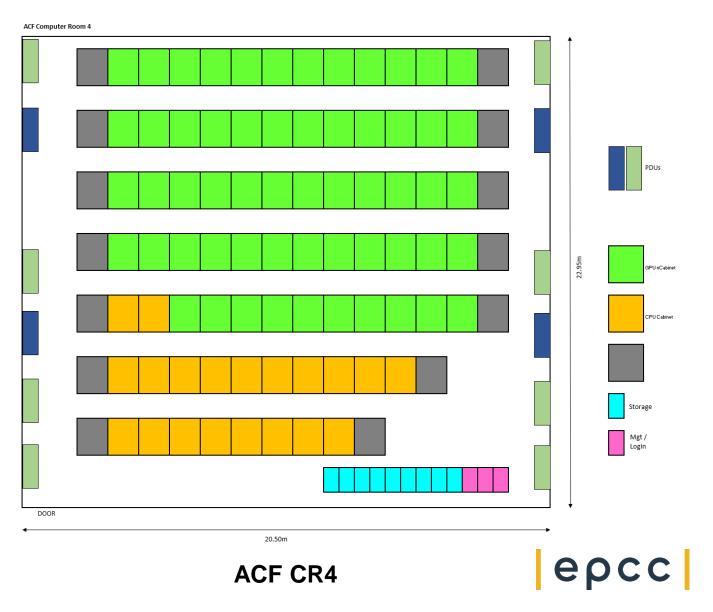
EPCC's Advanced Computing Facility Data Centre

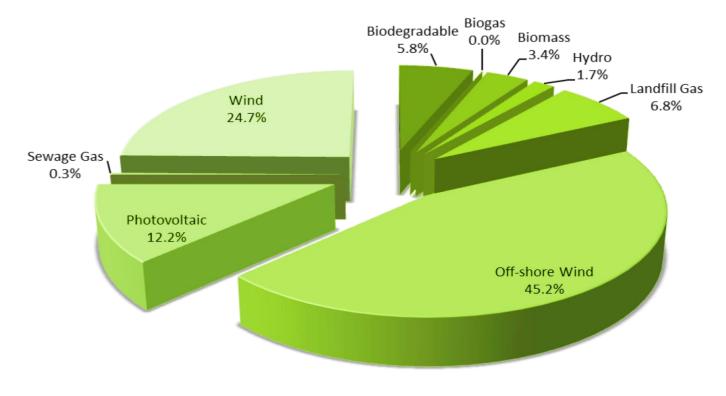
- Plant Room A and Computer Rooms 1&2 date back to 1970s
- Plant Room B added for HECToR
- Computer Room 3 and Plant Room C added for ARCHER – 4MW capability
- Computer Room 4 and Plant Room D added in 2020 – current configuration 6MW

Computer Room 4

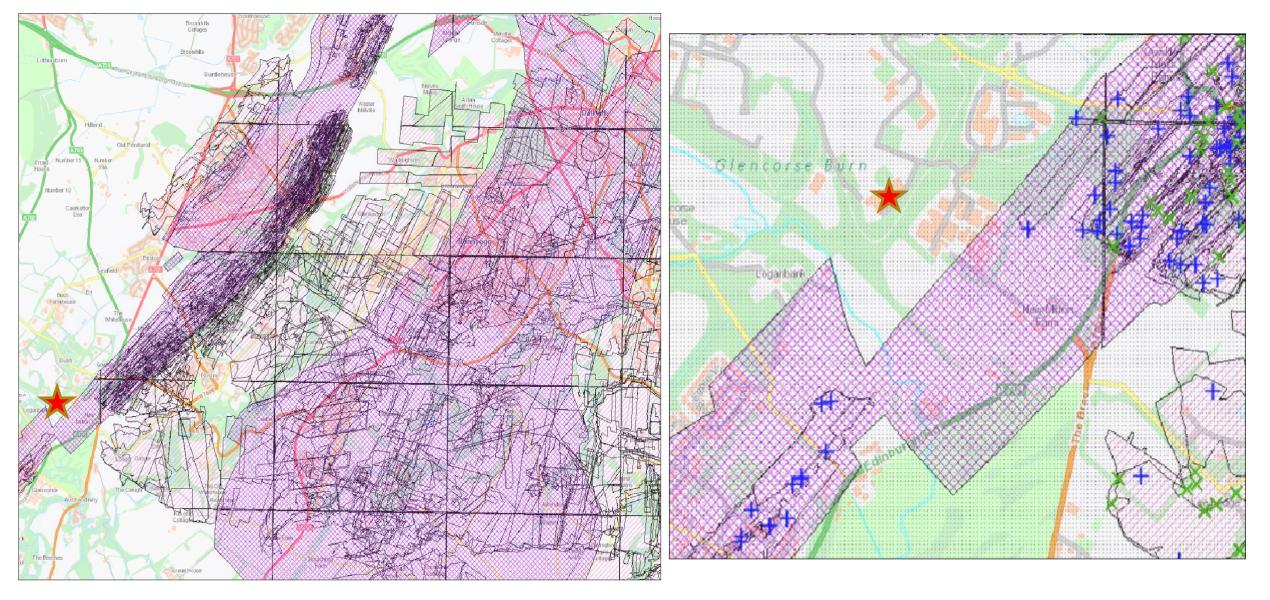
£20m – CR 4 + PR D £8.6m – 30MVA additional power Space for 270 standard racks

Opened Dec 2020

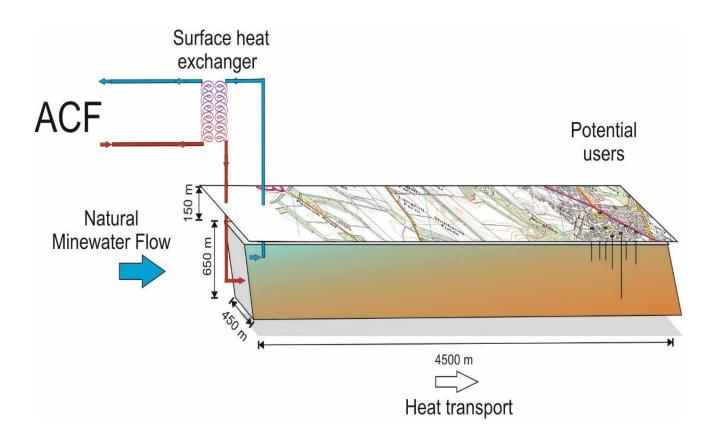



Example from RFI responses (obfuscated)

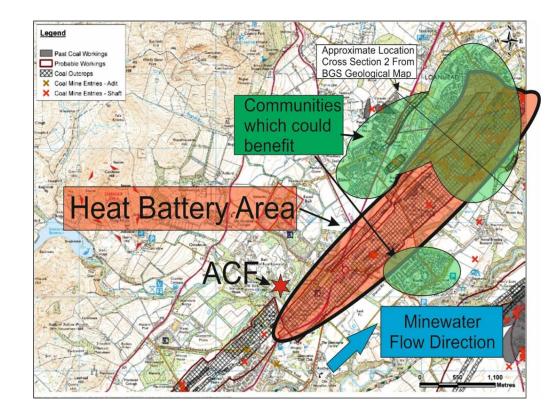
- Vendors asked to produce designs up to 25MVA
- Combination of
 - 1 ExaFlop HPL R_{max}
 - Cores-only partition
- Dual approach provides route from cores-only world to accelerated world
- GPU Partition
 - 24,000 GPUs
 - 380,000 cores
 - 60 racks to reach 1 ExaFlop HPL 19MVA power
- CPU Partition
 - 1,000,000 cores
 - 20 racks 6MVA power (limit reached)
- Plus
 - 100PB storage system
 - Login and service nodes



Aim for Net Zero - 100% Renewable Energy


- The University of Edinburgh is part of the Scottish Public Procurement contract for electricity
- We choose the 100% renewable energy option

- The ACF consumed 24.46 GWhrs in FY2018/19 ...
- With ARCHER 2 this will rise to ~50 GWhrs per annum



Aiming for better than Net Zero

Bilston Glen Colliery, 670m, 15.0C, Minewater Monktonhall, 866m, 25.5C, Rock Lady Victoria, 768m, 18C, Minewater

- Detailed feasibility study now completed to use hot water to heat abandoned mine workings
- Will create geothermal heat battery for us by homes, public and commercial buildings
- Battery will extend into South Edinburgh

Conclusion

- Delivering an Exascale capability will allow the UK's computational science community to compete with their international peers
- A true demonstration of the UK as a Science & Technology superpower

• But ...

- There is no guarantee funding will be made available
- Timescales can easily slip
- As many current projects are showing, these very large systems are not easy to procure, install or operate
- ... however, if we don't try we'll never succeed!

