


FPGAs for scientific workloads: 
The why and the how

Dr Nick Brown, EPCC

n.brown@epcc.ed.ac.uk

2



What are Field Programmable Gate Arrays (FPGAs)?

08.02.2022 3

Configurable Logic Block (CLB) 
contain look up tables which are 
configured with the application 
logic. These are sitting within a 
sea of configurable interconnect

Lots of I/O connections to the 
outside world, such as PCIe, 
HBM2, DDR-DRAM, QSFP28 
networking

Very fast on-chip memory, 
known as Block RAM (BRAM) 
and approx. 40 TB/s, similar to 
L1 cache and accessible in 
approx. 1 cycle. Typically a few 
MB on top end FPGAs

ASIC style components to 
perform arithmetic, used as 
the building blocks for floating 
point arithmetic as this saves a 
large amount of configurable 
logic



Worth a fresh look for HPC

• Over 10 years ago we had an FPGA cluster in EPCC
• But immaturity of the hardware (struggling to match CPU 

performance) and software ecosystem (difficult to 
program and lack of tooling) ultimately meant that this 
was not continued into large scale HPC adoption

08.02.2022 4

• But a decade is a long time, and times change!
• Much more capable hardware and exciting new 

technologies on the horizon

• (Very) significantly enhanced software ecosystem 
allowing the programming of these via C or C++



But isn’t programming these things still hard?

• High Level Synthesis (HLS) allows us to write code in C or C++ for FPGAs – no need 
to write code in VHDL or Verilog anymore!
• Xilinx HLS and OpenCL for Xilinx FPGAs, OpenCL for Intel FPGAs
• OpenCL on the host to drive kernels and transfer data
• Recent developments make this more a question of software development rather than 

hardware design, but there are still some challenges!

08.02.2022 5

> v++ -t hw --config design.cfg -O3 -c -k sum_kernel -o'sum.hw.xo' device.cpp

• Some profiling and debugging tools also 
provided (e.g. Intel integrated with Vtune)

• But building takes a long time (many hours!)
• Therefore these toolchains provide emulation 

capabilities where one can build their code in 
minutes and emulate on the CPU how it would run



What’s reconfigurable/spatial/dataflow computing?

Temporal computing: Can be thought of like a flowchart, with 
the PE (e.g. CPU or GPU) executing one stage after another

Temporal 
computing
(CPU or GPU)

Reconfigurable 
architecture
(dataflow)

Spatial computing: Operations implemented 
electronically on chip, and acts as a pipeline, loop 
iterations flowing through

float sum=0;

for (unsigned int i=0;i<num_its;i++) {

float d=input[i] + add_val;

sum+=d;

}

*result=sum;



But what HPC workloads are best suited?

• It’s important to pick your battles, and with CPUs 
and GPUs we have a good idea what performance 
properties are best suited to the technologies

08.02.2022 7

• For FPGAs, if your workload is compute-bound then a 
GPU is probably a better option!

• However if your code is memory bound or bound by 
other core issues, this is when you could get benefits
• Tailoring how you use that fast L1-style BRAM memory
• Exploiting high-bandwidth off-chip connections and HBM2



Example: AX kernel of Nekbone proxy-app

• Nek5000 is used for high fidelity simulation of rotating parts.
• Nekbone is a proxy-app that captures the basic structure of Nek5000

08.02.2022 8

On 24 CPU cores: 65.74 GFLOPs
 Only 11.7 times faster than one 

CPU core 

On a Xeon Platinum Cascade Lake with N=16, 800 elements

• All double precision floating point
• AX kernel applies the Poisson operator of 

the CG solver accounts for approx. 75% of 
overall runtime of Nekbone

• 800 elements, and a size of N, with the 
number of grid points equal to N3

• For instance with N=16 then there are 
831488 double precision floating 
point operations per element

Use FPGA to ameliorate overhead of memory access and keep compute fed with data



Overview of single kernel performance

08.02.2022
9

Description Performance
GFLOPs

% CPU 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 -

Initial FPGA port 0.020 0.03%

Optimised top down for dataflow 0.28 0.43%

Optimise bottom up 27.78 42.26%

Ping-pong buffering 59.14 89.96%

Increase clock frequency to 400 Mhz 77.73 118%

Von-Neumann

Dataflow

A
p

p
ro

x.
 4

0
0

0
 t

im
es

 
d

if
fe

re
n

ce
 in

 p
er

fo
rm

a
n

ce

For N=16, Runs performed on a Xilinx Alveo U280

Detailed information available at https://arxiv.org/pdf/2011.04981.pdf



Bottom up optimisations

08.02.2022 10

Loop pipelining Loop unrolling

Conflict on external port to 
HBM2/DDR memory

Conflict on (dual-ported) 
on-chip BRAM memory

Spatial dependency



Working top down: Adopting a dataflow design

08.02.2022 11

• Each stage is an independent function running 
concurrently and connected via streams
• Idea is to keep each part continually fed with data 

and processing

• Golden rule: Keep the data flowing, each cycle 
generating a result

Description Performance
GFLOPs

% CPU 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 -

Initial FPGA port 0.020 0.03%

Optimised top down for dataflow 0.28 0.43%

Optimise bottom up 27.78 42.26%

Ping-pong buffering 59.14 89.96%

Increase clock frequency to 400 Mhz 77.73 118%



Buffering data between stages

• Adopt ping-pong (double) buffering
• Works in three phases, loading data for the 

next element, processing the first three MM 
for the current element, and the last three 
MM for the previous element

• Keeps all parts running concurrently

08.02.2022 12

• Also possible to accurately predict the realistic 
theoretical best performance our algorithm can 
deliver
• Each MM is 31 FLOP/cycle and accumulation is 

17/cycle, equals 203 FLOP/cycle. Multiply this by clock 
frequency for theoretical FLOPS

• If not achieving this then not keeping data flowing!

Description Performance
GFLOPs

% CPU 
performance

Theoretical 
performance

% Theoretical 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 - - -

Initial FPGA port 0.020 0.03% 6.9 GFLOPs 0.29%

Optimised top down for dataflow 0.28 0.43% 6.9 GFLOPs 4.06%

Optimise bottom up 27.78 42.26% 61 GFLOPs 45.54%

Ping-pong buffering 59.14 89.96% 61 GFLOPs 96.95%

Increase clock frequency to 400 Mhz 77.73 118% 81.2 GFLOPs 95.73%



Performance against CPU and GPU

08.02.2022 13

• FPGA runs on an Alveo U280

• CPU on 24-core Cascade Lake 
Xeon Platinum

• GPU on NVIDIA V100 

• 4 FPGA kernels for double 
precision
• Depends on exact problem size 

(NX)

• 7 FPGA kernels for single & 
half precision
• Depends on exact problem size 

(NX) 

H
ig

h
er

 is
 b

et
te

r



Power efficiency against CPU and GPU

08.02.2022 14

• FPGA runs on an Alveo U280

• CPU on 24-core Cascade Lake 
Xeon Platinum

• GPU on NVIDIA V100 

• 4 FPGA kernels for double 
precision
• Depends on exact problem size 

(NX)

• 7 FPGA kernels for single & 
half precision
• Depends on exact problem size 

(NX) 

H
ig

h
er

 is
 b

et
te

r



Another example: Atmospheric advection

08.02.2022 15

• Part of Met Office NERC Cloud (MONC) model
• Accounts for around 40% of the model runtime

• Stencil code working on three fields (U, V, W which is wind 
in x, y, z dimensions)

• Same ideas as previously
• Kernel is fairly memory 

bound
• Focussed on bottom up and 

top down dataflow 
algorithmic techniques

• Running on both Xilinx 
Alveo and Intel Stratix-10



Tailoring caching of data via shift buffer

• 3D domain, where stencil computations require up to 
27-points to calculate value for each grid cell

• Want to read only one new value from external 
memory for each field per cycle as otherwise get 
conflicts on the memory port

08.02.2022 16

Cell -1 Cell 0 Cell +1

Read value from 
external memory

• But need to provide 27 
values per cycle to the 
advect routine in order to 
achieve a result for each 
field for each clock cycle

• Use a shift buffer - 1D 
example

Each cycle shift values down by 
one, throwing away cell-1



Tailoring caching of data via shift buffer

08.02.2022 17

• Have these windows running 
across the 3D domain

• Generates 27-point stencil each 
cycle 

• Memory on FPGA limits size in 
Y dimension so work in chunks

• The golden rule of keeping the data flowing and generating a 
result per cycle necessitated this shift buffer, which then impacted 
how the code is running and having to chunk in Y 

Detailed information available at https://arxiv.org/pdf/2107.13500.pdf



Performance comparison

• FPGAs outperform the 
CPU by a long way, but 
GPU is a tough test!

• The Xilinx Alveo U280 
tends to outperform the 
Intel Stratix 10
• 6 kernels on Alveo vs 5 on 

the Stratix 10
• 5 kernels on Stratix 10 are 

running at 250 MHz, 
whereas Alveo at 300MHz

• At largest problem sizes 
Alveo must use DDR-DRAM 
rather than 8GB HBM2

08.02.2022 18



Power efficiency

• Alveo U280 has excellent 
power efficiency until it 
has to switch from HBM2 
to DDR-DRAM
• Combination of reduced 

performance and (slightly) 
increased power draw

• Higher power draw of 
Stratix 10 means it is 
competitive against the 
GPU, especially for 
smaller problem sizes

08.02.2022 19



Have a play with FPGAs for your code!

• In EPCC we host the ExCALIBUR H&ES FPGA testbed
• Give HPC code developers access to FPGAs for their workloads
• Provides a range of FPGAs to see what works best
• All tooling preinstalled and provide resource for code 

development (e.g. building and emulation)
• In collaboration with UCL and Warwick who are developing 

enabling software

08.02.2022 20

Access is free, visit https://fpga.epcc.ed.ac.uk for more details

https://fpga.epcc.ed.ac.uk/


Summary

08.02.2022 21

• FPGAs have become far more capable and next-
generation technologies are very exciting
• Programming FPGAs has become significantly more 

productive, but need to rethink our algorithms from 
the perspective of dataflow to achieve good 
performance
• Technologies like SYCL on the horizon which look to be very 

interesting
• Software experts have a significant contribution to 

make here around algorithmic techniques and 
successes stories at the application level.

• It’s an exciting time in HPC, and FPGAs have a potential role to play
• But important to pick your battles and focus on solving code level challenges 

suited to FPGAs, they certainly won’t replace GPUs or CPUs!


