

ExCALIBUR and the Quest for the Holy Grail of Weather & Climate Prediction

Nigel Wood, Met Office

December 2021

UK's Weather & Climate prediction system

The challenge of a unified approach

- Operational forecasts
 - Global (resolution approx. 10km)
 - Regional (resolution approx. 1.5km)

10 km

© Crown Copyright, Met Office

300 m

Seasonal predictions

➢ Resolution approx. 60km

Unified \Rightarrow Same solver, same parametrisations, same code base for all

- Global and regional climate predictions
 - ➢Global resolution around 120km
 - ➢Regional around 4-1.5km
 - ➢Run for 10-100-… years

300 km

"The quiet revolution" $\approx 1 \text{ day's}$ lead time per decade

108 hour forecast today is as accurate as the 24 hour forecast was in 1980

How do we achieve this? What is the holy grail?

Our challenge

Why Exascale?

- Currently we simulate the world's weather at 10 km intervals
- To complete the 7 day forecast in 1 hour needs a petascale machine (16 Pflops) (we use 19,000 cores)

- To get to 5 km means 2x2 more cells and a 2 times smaller interval in time
 - > O(10) increase in compute power & data
- To get to 1 km means 10x10 more cells and a 10 times smale interval in time

> O(1000) increase in compute power & data

GungHo/LFRic/PSyclone

Not ExCALIBUR funded but key to delivery of next generation capability

March 2021 saw delivery of first capability of new GungHo/LFRic/PSyclone based global atmosphere model

But a lot more to do...

Weather & Climate prediction system Schematic

Weather & Climate prediction system Activities

Some example activities

Atmospheric observation pre-processing and assimilation

Delivering new flexible framework deployable across different architectures

Atmospheric Model data layout and memory access design system

Delivering mixed precision capability & flexibility in memory layout

Number of GPUs (CPU sockets for Scafell Pike)

Atmospheric Model data layout, memory access design system, and spatial decoupling of processes

- Only do what is needed: Example miniapp implementation capable of spatial splitting of combinations of transport, dynamics and UM physics parametrizations.
- Only do it to the accuracy needed: framework in place for mixed-precision, but suspected compiler in Gnu means refactoring needed to demonstrate benefit.
- Do it using the optimal data layout: Implementation of the "i-first" data transpose to the microphysics code in the LFRic basic-gal model shows a 4x speed up in that part of the model.

Chemistry

Dynamics

A moist bubble test showing the impact of running the physics (condensation/cloud scheme) at a coarser resolution.

Next-Generation observation processing

Key infrastructure developments achieved

JOPA: Jedi-based Observation Processing Application

Automatic Schema

Global UM interface

(incl. background error / Rho-Theta level)

- VarObs/CX, interfaces
- Multiple UFO filters (thinning, Composite operator, where clause , etc ...)
- ODB full backend to IODA
- Comparison suite
- Generic auxiliary files interface (incl. netcdf / csv) used by obs. error, VarBC coeff., Static bias, station list
- Improved ObsSpace Group (Derived Observation)
- Generic (& user defined) QC diagnostics flag

Thank you! Questions?

See https://excalibur.ac.uk/ for more

