ExCALIBUR

EXCALIBUR – EXPLOITING THE EXASCALE TO BOTTLE A STAR

Rob Akers, UKAEA

CIUK – Thursday Dec 9th 2021, 14:20-14:40

0

Why "ExCALIBUR"?

....build a UK wide "rainbow" team – take a multi / interdisciplinary approach

- Legacy codes tend not to be "actionable" VVUQ
- Codes usually designed for "science", not "engineering" MOR methods not built in
- Codes designed in isolation not designed for "coupling"
- Codes are always designed for one architecture inflexible not designed for emerging architectures or with performance portability in mind
- Codes are nearly always incredibly hard to adapt many started off as PhD.
 projects lack of DSL based APIs

08 February 2022

NEPTUNE High Priority Use Case

Neutrals and Plasma Turbulence Numerics for the Exascale

Modelling the plasma edge or 'exhaust'

- A long established exascale grand-challenge,
 Multi-physics, Multi-scale problem
- Complexity turbulence, atomic physics etc.
- Incomplete mathematics (\$1M Millennium Prize)
- For plasma, kinetic effects can't be ignored requires coupled fluid + particles

Requires an interdisciplinary rainbow team...

Development by Proxyapps

NEPTUNE

- 1. Fluid solver: High order spectral-hp
- 2. ...coupled to FEM-PIC
- 3. Performance Portability (SYCL/OneAPI)
- 4. Next gen Preconditioners (MCMC and Structure preserving methods)
- 5. Built in UQ and Model Order Reduction
- 6. Time stepping parallel in time?
- 7. DSL front end (Julia?)
- Converge Proxyapp based research in 2022 to start building full code/library

