
Energy Efficient Quantum Computing Simulations
Jakub Adamski 1

Supervisors: Dr. Oliver Thomson Brown 1 Dr. Raul Garcia-Patron Sanchez 2

1EPCC, University of Edinburgh 2School of Informatics, University of Edinburgh

Introduction

Classical simulations of quantum circuits are essential for the understanding and development

of quantum computing. However, it is a task that scales exponentially with the problem size,

both in time and memory, which makes it very energy hungry. The goal of this poster is to

outline different HPC methods for performing the simulations and investigate how to make

them more efficient in resources and energy.

Methodology

Problem:  
Energy benchmarking 
of quantum simulations

Step 1: 
Choose relevant 

quantum algorithms

Step 2: 
Select different 

simulation frameworks

State vector 
evolution – QuEST

Tensor network 
contraction – iTensor

Quantum Fourier 
Transform (QFT) 
- low-entanglement 

- widespread

Random Quantum 
Circuit (RAND) 

- high-entanglement 
- shows advantage 

Step 3: 
Implementation

Set-up

Energy usage 
- weak scaling 

- minimum MPI tasks QuEST

iTensor

Experiments

Simulation runtime 
- no parallelism yet 
- still can be better

CPU underclocking 
- high energy saving 

- low runtime cost 

Fixed bond size 
- approximates result 

- high speedup

Profiling 
- explains underclocking 
results with MPI usage 

Results

Analysis

Conclusions

Figure 1. Flowchart outlining the process of developing of this poster.

Quantum circuits

Two circuits were selected for benchmarking, to cover a range of properties. A unique character-

istic of quantum mechanics is entanglement, which defines how correlated different measure-

ments are. Quantum circuits can modify the entanglement to various extents.
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Figure 2.

Quantum Fourier Transform (QFT) – a

widespread quantum algorithm. It is easy to

verify, as inputting a |0〉 state should output an
equal superposition of all states. This circuit can

modify the entanglement only to a limited

degree. It consists of O(n) non-diagonal
Hadamard gates and O(n2) diagonal controlled θ
phase shift gates.
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Figure 3.

Random circuit (RAND) – a simplified version of

the circuit used in Google’s quantum advantage

claim. It is built of multiple layers that create

entanglement. First, each qubit is acted on by a

random gate from the set [
√

X,
√

Y ,
√

W ]; the
neighbouring qubits are then entangled with

controlled π
2 phase shift gates. At least n layers are

necessary to significantly entangle n qubits.

The circuit has O(n2) random non-diagonal
single-qubit gates, and likewise, O(n2) diagonal
two-qubit CP gates.

The circuits above are made of quantum gates that can be described with the following matrices.

In general, diagonal gates require less communication to simulate, since they act locally.
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Approach 1: state vector evolution – QuEST

State vector simulations require keeping track of the whole state, which takes up the size of

O(2n) for n qubits. It quickly becomes necessary to distribute the task to multiple nodes (on
ARCHER2 at 34 qubits), as can be seen in table 1 below. This induces increased communication.

Number of qubits 32 32 33 33 34 35 36

Number of nodes 1 2 1 2 4 8 16

Peak total memory 64 GB 128 GB 128 GB 256 GB 512 GB 1 TB 2 TB

Peak per-node memory 64 GB 64 GB 128 GB 128 GB 128 GB 128 GB 128 GB

QFT min. runtime 125 s 80 s 251 s 169 s 193 s 231 s 263 s

RAND min. runtime 713 s 528 s 1524 s 724 s 1476 s 1943 s 2359 s

Table 1. Memory and time required to run quantum circuit simulations with QuEST framework.

With so much communication, nodes likely spend most time waiting on send/receive. Therefore,

it may be possible to decrease the clock frequency without incurring much runtime cost. This

can be achieved via a SLURM --cpu-freq input argument.

0.4

0.6

0.8

1.0

1 2 4 8 16
Nodes used

P
ar

al
le

l e
ffi

ci
en

cy

0

5

10

15

1 2 4 8 16
Nodes used

E
ne

rg
y 

co
ns

um
pt

io
n 

[M
J]

Circuit QFT RAND CPU frequency High Medium Low Figure 4.

Weak scaling – for a minimum number

of ARCHER2 nodes required to fit the

problem, starting from 1 node for 32

qubits and doubling for every new

qubit. Parallel efficiency is poor, so this

is clearly the most efficient approach.

An exception is that 33 qubits can fit on

1 node (no MPI sendrecv buffer).

QFT performed better then RAND due

to prevalent diagonal gates. As

predicted, there is a significant energy

consumption gap between high and

medium CPU clock frequencies.
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Figure 5.

Clock frequency impact – for the same

scaling as on figure 4. The data is

displayed with respect to high

frequency. New highm1 frequency was

added, which lies above medium.

It is clear that the runtime penalty of

decreasing the frequency is lower than

the boost in energy efficiency – medium

setting being the most optimal.

Therefore, it is a viable strategy for

greener simulations, adding only a few

seconds of runtime cost.

Simulation profiling with Arm MAP

Profiling can provide a clear picture of what is happening in the simulations.
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Figure 6.

Measured profiles – were collected

with Arm MAP profiler on 16 nodes for

36 qubits, with varying frequencies.

They show the fraction of the program

spent on different runtime stages.

As predicted, there is a lot of MPI calls,

especially for RAND, which is

dominated by non-local operators. The

communication fraction also seems to

slightly increase when lowering the

frequency, likely because MPI also

requires some CPU time. The

compute, on the other hand, doesn’t

increase, which means it is not as

affected, despite lower CPU speed.

Approach 2: tensor network contraction – iTensor

Tensor networks allow an efficient state vector representation via a Matrix Product State (MPS).

Instead of storing 2n amplitudes, each qubit is represented by a site, which is connected to others

with contractable bonds of dimensions that correspond to the entanglement of the state:

low entanglement states are compact and easy to evolve/contract

high entanglement bond size explodes, but can be trimmed, which approximates the state

The platform used for the experiments is iTensor. It doesn’t support any parallelism for general

tensor networks, but even under those limitations it can be better than QuEST for some circuits.
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Figure 7. Runtimes of different algorithms in iTensor.

QFT is a circuit that doesn’t induce much entanglement, so it can be simulated very fast. It was

fed with a trivial |00...0〉 state, and a lightly entangled |W 〉 state defined as:

|W 〉 = 1√
n

(|100...0〉 + |010...0〉 + ... + |000...1〉)

RAND is highly entangling, whichmakes it difficult to simulate the full state. Promising resultswere

achieved by trimming the number of bond dimensions. On figure 7 maximum bond dimension of

256 was used for the trimmed state. However, its accuracy quickly degrades for more qubits.

Conclusions

The state vector approach is stable regardless of the entanglement. Due to high communication,

it is most economical when running on the minimum number of nodes to fit the problem, and

reducing the CPU clock frequency to medium.

In contrast, the runtime, and thus energy consumption of tensor networks is very dependent

on the entanglement. If it is low, iTensor can drastically outperform QuEST despite featuring

no parallelism. However, for highly entangled states, the full simulation is very slow – but can

be approximated by trimming the bond dimensions.

In the future, tensor network simulations should be parallelised with OpenMP and MPI. Then

they could be directly compared against state vector methods to figure out whether and when

they are advantageous, especially in case of an approximated state.
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