A foray into composable infrastructure for HPC Alastair Basden, Peter Draper, Paul Walker, Mark Lovell, Richard Regan,Gokmen Kilic

DiRAC / Durham University ExCALIBUR H&ES

CIUK 2023

DiRAC

DiRAC

- UK national HPC service for STFC researchers
 - Tier-1 facility
- 4 sites:
 - Extreme Scaling @ Edinburgh
 - Data Intensive @ Leicester and Cambridge
 - Memory Intensive @ Durham
- Bespoke systems for the associated science
 - More cost effective than a single large system
 - Focus on Capability systems
 - For pushing the boundaries of what can be achieved

COSMA

- COSMA7: 452 compute nodes (115kW total)
 - 28 cores, 512GB RAM (~95kW)
 - EDR InfiniBand (100Gb/s) and Rockport 100Gb/s (6kW)
 - Fat tree 2:1 blocking
 - 6PB storage, 420TB fast NVMe (15kW)
- COSMA8: 528 compute nodes (~300kW total)
 - ~70k cores (~250kW)
 - 128 cores, 1TB RAM per node (Rome/Milan)
 - HDR InfiniBand (200Gb/s) (~18kW)
 - Fat tree non-blocking
 - 15PB storage (20kW)
 - 1.2PB fast NVMe storage ~350GB/s (8kW)
 - Cooling distribution units (1kW)

COSMA science

- Primarily cosmology:
 - Simulation of the universe
- Also nuclear physics, particle physics, black holes, planetary collisions, galaxy formation

Composability

CPU

NIC

RAM

GPU

Interconnect

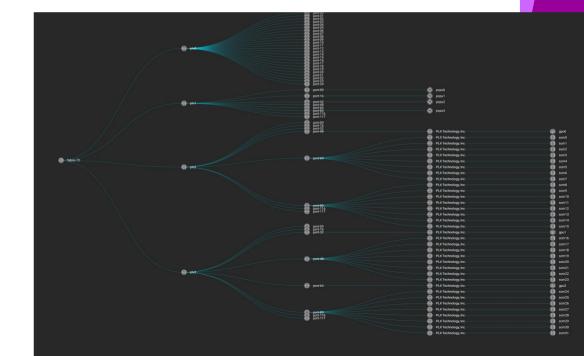
NVMe

FPGA

- Separation of device resources
 - Compute, accelerators, storage, network, RAM
 - Treated as services
- Physical components no longer in a server
 - Assigned to the server upon demand
 - Building compute capability as required
 - Clusters can be better matched to typical use cases
- Dynamically provision bare metal via software

Compostability

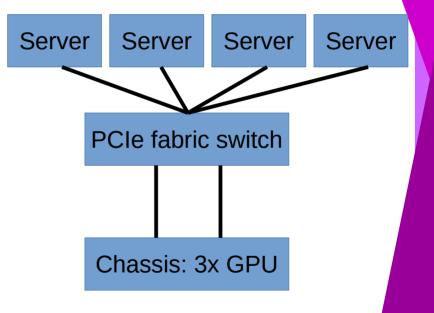
- Compostable infrastructure used for CIUK student cluster competition
- Not to be confused with composability
 - Similar aims (lower emboddied CO2, better resource use, etc)



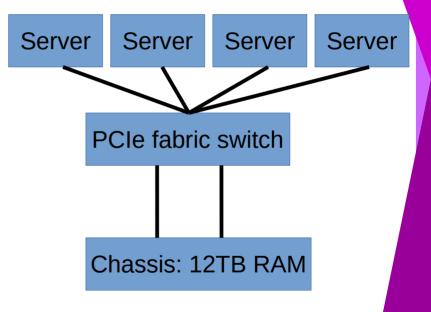
Uses for composability in HPC/A

- Massive GPU systems
 - 10s of GPUs per server
- Scarce resource sharing
 - Move GPUs as required to assigned servers
- Memory bursting
 - Adding RAM to servers as required
- Networking?
 - Composing multiple BlueField+GPU cards

Composability on COSMA

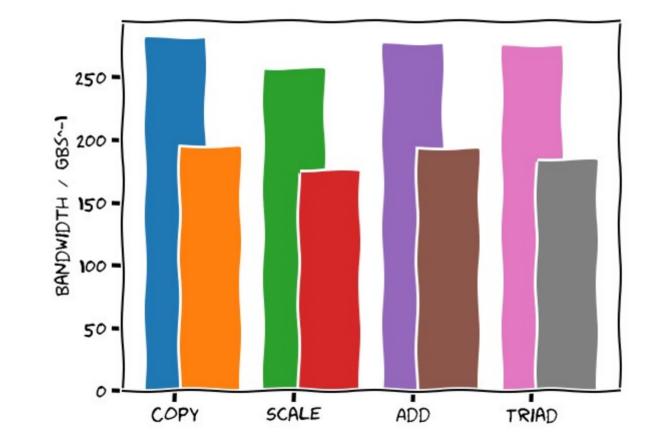

- Liqid fabric:
 - One OSS chassis
 - 3 A100 GPUs (2021)
 - 4 RAM cards (3TB each) (2023)
 - PCIe switch and controller
 - 4 servers with fabric cards
 - One login node
 - 3 in a Slurm partition

Liqid GPU system

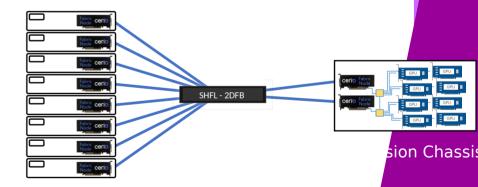

• 3x A100 GPUs assignable to 4 servers

- Can be hot-swapped
- Occasionally causes problems
 - 3.10 kernel
- Usually static
 - One is a login node
- Slurm integration possible
 - Automatic provision
 - We use manual approach
- PCIe4 x4 connectors in each server
 - GPU bandwidth limited
 - 2 GPUs share 1 chassis card
- Physical connectivity is a pain
 - 4x SAS-type cables per card

Liqid RAM system


- 4x Honey Badger PCIe cards
 - Each with 8 M.2 NVMe Optane drives
 - 360GB ~3TB total
 - 11.5TB combined Optane RAM
 - Each drive can be assigned individually to any server
 - Default configuration 8 drives/server (2 per HB)
- Memverge software to map Optane to RAM
 - Tiering of native RAM and Optane
 - Hot data kept in RAM, warm data moved to Optane
- Default setup adds ~2.5TB to each server
 - A bit of a pain to re-compose
- COSMA Jupyter hub can run on it
- Problems:
- Lack of PCIe device entries in the BIOSs
- Possible kernel bug
- Power demands (native)

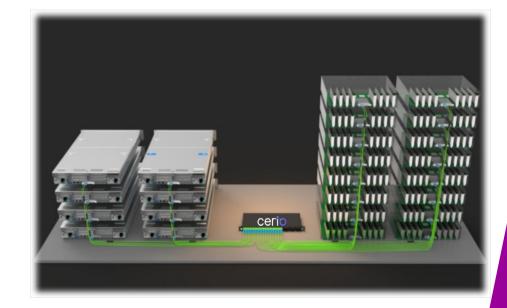
Memory bandwidth


- Limited by the PCIe bandwidth (64Gb/s)
- MemVerge software used
 - tiered memory transfers between local DRAM and composed memory
 - Behind the scenes
- Memory allocations using a LD_PRELOAD
 - Prefix commands with "mm"
 - mm free -h, mm python jupyterlab, mpirun mm ..., etc
 - Could be made the default option

STREAM benchmarks tests

Rockport Cerio system

- Moving from in-rack-scale to cluster-scale
 - PCIe-based fabrics don't scale well
- Cerio flit-based fabric (6D torus) scales to thousands of nodes
 - Experience with the Rockport Ethernet fabric (COSMA7)
- High-density optical cables
 - Standard MTP connections
- Active components solely in server cards
 - "switch" not an active component
 - 8-node test system in planning stage
 - 300GBit/s bandwidth, 200Gb/s to nodes
 - PCIe5


CXL and composability

- Compute eXpress Link
 - Open standard CPU to device and memory connections
- Brings memory coherence
 - Full composability of memory
 - Memory-coherent IO networking
 - Low latency communication sub-mircosecond
 - /dev/shm spanning multiple servers
 - Multiple hosts work on same data without copying and shuffling

Considerations for composability

Fabric reboots

- Single point of failure
- Cerio system should mitigate this to some extent
- Limited PCIe register slots
 - Determined by the BIOS
- Reliability
 - Particularly for RAM
- Cost: Not necessarily cheaper
- Power usage
 - Server thinks it is powering the cards
 - Custom firmware may be required
- Keeping track of infrastructure
 - Suspected dodgy components
- Not dynamically recoverable
- Bandwidth and latency hits
- Early days!

Net-zero considerations

- Significant potential
 - Lower embodied CO2 (less hardware)
 - Better match supply to demand
 - Less resource sitting idle
 - Expandable upon demand
 - Easy to add GPU resource as required by changing workloads

Conclusions

- Composability works
 - Currently a bit rough at the edges
- Lack of standards and flexibility
 - Vendor lock-in
 - Will hopefully improve
 - RAM-based fabric could see significant performance improvement for some codes
 - CXL