
Making HPC more accessible: 

Effective HPC programming via 

domain specific abstractions

Nick Brown

n.brown@epcc.ed.ac.uk

Emilien Bauer

emilien.bauer@ed.ac.uk

mailto:n.brown@epcc.ed.ac.uk
mailto:emilien.bauer@ed.ac.uk


The challenge

• Writing parallel code that can 
exploit present day 
supercomputers is extremely 
hard and requires highly 
specialist skills

• But this is going to get even more difficult 

as we move further into the exascale era

• It is no longer tenable to directly leverage 

serial languages and add in our own 

parallelism (e.g. MPI, CUDA, 

vectorisation etc)



Domain Specific Languages to the rescue!

• Raise the abstraction level so the 

programmer can provide a high 

level description of their algorithm 

that the compiler can then exploit to 

make tricky, low level decisions 

around parallelism

• Languages is a poor term, 

abstractions is far better



Breaking down silos

• The elephant in the room is that these are all heavily 

siloed and reinvent the wheel

• Requires significant development effort from the DSL designers

• Risk for users (e.g. will the DSL be maintained in the future?)

• Challenges supporting new architectures

There is therefore a sweet spot in the middle, where we 

gain the best of both worlds



Step in MLIR and LLVM

• LLVM is the ubiquitous compiler 
framework that has been around for 
over 20 years
• In addition to providing its own compilers, AMD, Intel and Arm compilers are all 

built on-top of LLVM, as is the Cray C/C++ compiler and AMD Xilinx’s FPGA HLS 
technology.

• MLIR was developed by Google in 2020 and since 2021 has been part of 
the main LLVM repository

• At its core MLIR is a framework for developing different types 

of Intermediate Representations (IR) at different levels

• Numerous (IR) dialects and transformations are provided 

which enables lowering between these

• Can add your own easily

• A big community has grown up

Front ends 

(e.g. Flang)

Back ends (e.g. 

CPU, GPU, 

FPGA)

LLVM IR



MLIR example lowering

• But MLIR is written in C++ and using specialist 
Tablegen configuration format for dialects, MLIR 
is esoteric and requires a steep learning curve

Stencil

Arith

Scf

Arith

Memref

GPU

Arith

Memref

OpenMP

Arith

Memref

Vector

Arith

Memref

GPU

Arith

LLVM

OpenMP

Arith

LLVM

Vector

Arith

LLVM

LLVM 

IR

LLVM 

IR

LLVM 

IR

T
a
rg

e
t s

p
e
c
ific

 L
L
V

M
 b

a
c
k
e
n
d
s



xDSL: A Python toolkit for MLIR

• Python toolkit for MLIR that enables high productivity 

development of dialects and transformations

• Contains existing 
MLIR dialects & 
transformations and 
we are adding HPC 
focussed ones too

• Whole load of other 
things also, such as 
an MLIR interpreter 
and Python frontend



xDSL

• Makes experimenting with MLIR trivial

• Can go between xDSL and MLIR, 

leveraging transformations in both

• For our DSL purposes also means that a 

DSL can be a thin abstraction layer on-

top of xDSL which provides a wealth of 

dialects and transformations that will 

ultimately drive MLIR/LLVM
https://github.com/xdslproject/xdsl



CIUK Theme: Productive supercomputing

•Making HPC More Accessible
1. For HPC developers as they can more easily 

leverage supercomputers by using Domain 

Specific Languages

2. For DSL developers as these are now a thin 

abstraction layer atop a common, well 

supported, ecosystem



Domain Specific Compilation

• The Open Earth Compiler 

project from ETH Zurich used 

MLIR for domain specific 

compilation of stencil codes

• Successfully leveraged 

MLIR's qualities to leverage 

high-level information and 

reach high throughput on 

GPUs



First targets

• Climate simulation

• Discovers stencil code in 

Fortran

• Apply Domain Specific 

optimizations

• Generates MPI, OpenMP, 

OpenACC code

evito

• Seismic and fluid 

simulation, medical 

imagery

• Generates stencil code 

from Python PDEs

• Apply Domain Specific 

optimizations

• Generates MPI, OpenMP, 

OpenACC code



The broken silos

• Everything below the DSL layers is reinvented wheels



The sweet spot

Sharing infrastructure:

• Implementation and Maintenance cost is spread across projects

• Everyone gets all benefits

• Can still be driven by specific needs



The sweet spot
Our xDSL 

technology
Existing MLIR 

ecosystem



A flexible abstraction

 %input = stencil.load(%input_buffer) :
(!field<[0,7]xf64>)-> !temp<?xf64>

 %out = stencil.apply(%arg = %input : !temp<?xf64>)-
> !temp<?xf64> {

 %l = stencil.access %arg[-1] : f64
 %c = stencil.access %arg[0] : f64
 %r = stencil.access %arg[1] : f64

 // %v = Some arbitrary computation

 stencil.return %v : f64
 }

 stencil.store %out to %target([1]:[6])
 : !temp<?xf64> to !field<[0,128]xf64>



High-level distribution

Halo exchange is a simple idea, let's keep it simple



High-level distribution



Performance of PSyclone & Devito
GPU on Cirrus (V100)Single-node on ARCHER2 Strong scaling on ARCHER2

Higher is better, PSyclone top row & Devito bottom row



Integration with Flang: Beyond DSLs

• Our theory was that we can gain a 
performance improvement by combining 
with domain specific optimisations 

H
ig

h
e

r 
is

 b
e

tt
e

r

• Performance falls short of 

Cray compiler for our stencil 

benchmarks (on a single core 

of ARCHER2, HPE Cray EX)



Integration with Flang: Beyond DSLs

H
ig

h
e

r 
is

 b
e

tt
e

r

Multithreaded performance on ARCHER2

H
ig

h
e

r 
is

 b
e

tt
e

r

GPU performance on Cirrus (V100)

H
ig

h
e

r 
is

 b
e

tt
e

r

Distributed memory performance on ARCHER2



Auto-optimisation for new architectures

• Very different algorithm layout on FPGAs from the Von 
Neumann counterpart
• Requires significant experience, expertise and time to port codes 

to the architecture

• Using our existing infrastructure and domain specific abstractions, 
can we automatically optimise algorithms for FPGAs?

• So there is a single, unchanged, Von Neumann version driving them?

Field Programmable Gate 

Arrays (FPGAs)

RISC-V high core-count accelerator 

chip



Automatic optimisation for FPGAs

• AMD Xilinx already have an LLVM backend

• We added a new High Level Synthesis (HLS) MLIR dialect that 

then lowers to IR compatible with AMD Xilinx’s backend

• Developed transformations 
from the existing stencil 
dialect to this new HLS 
dialect
• Everything else remains the 

same in the compiler pass

• DSLs/languages don’t need 
any knowledge of the target 
architecture



Automatic optimisation for FPGAs

• On an AMD Xilinx U280 FPGA

• For PW advection, our approach is between 90 and 100 times faster than DaCE

• For tracer advection, our approach is between 14 and 21 times faster than DaCE

H
ig

h
e

r 
is

 b
e

tt
e

r

H
ig

h
e

r 
is

 b
e

tt
e

r



Conclusions and next steps…

• We can’t keep reinventing the wheel when it comes to compiler 
infrastructure for DSLs

• LLVM and MLIR are a strong alternative for sharing

• We have developed the xDSL Python framework to lower the barrier to 
entry and offer key HPC components so that the ecosystems supports 
HPC workloads

• A lot of potential for bringing domain specific abstractions into 
existing languages, and we should be investing in Flang

• To date our focus has been on stencils, are now generalising 
this to other patterns



• https://xdsl.dev

• https://github.com/xdslproject/xdsl

• https://xdsl.zulipchat.com/

Emilien BauerNick Brown Anton Lydike

https://xdsl.dev/
https://github.com/xdslproject/xdsl
https://xdsl.zulipchat.com/

	Slide 1: Making HPC more accessible: Effective HPC programming via domain specific abstractions
	Slide 2: The challenge
	Slide 3: Domain Specific Languages to the rescue!
	Slide 4: Breaking down silos
	Slide 5: Step in MLIR and LLVM
	Slide 6: MLIR example lowering
	Slide 7: xDSL: A Python toolkit for MLIR
	Slide 8: xDSL
	Slide 9: CIUK Theme: Productive supercomputing
	Slide 10: Domain Specific Compilation
	Slide 11: First targets
	Slide 12: The broken silos
	Slide 13: The sweet spot
	Slide 14: The sweet spot
	Slide 15: A flexible abstraction
	Slide 16: High-level distribution
	Slide 17: High-level distribution
	Slide 18: Performance of PSyclone & Devito
	Slide 19: Integration with Flang: Beyond DSLs
	Slide 20: Integration with Flang: Beyond DSLs
	Slide 21: Auto-optimisation for new architectures
	Slide 22: Automatic optimisation for FPGAs
	Slide 23: Automatic optimisation for FPGAs
	Slide 24: Conclusions and next steps…
	Slide 25

