
Porting and Optimising the TELEMAC-MASCARET Hydraulics Suite for POWER8
Judicaël Grasset1 Yoann Audouin2 Stephen Longshaw1 Charles Moulinec1

1STFC, Scientific Computing Department, Daresbury Laboratory, Warrington, United Kingdom
2EDF R&D, Chatou, France

Objectives and Outcomes

•Making sure TELEMAC-MASCARET compiles and runs with GNU gfortran and IBM xlf
on a POWER8 machine.

•Using efficiently the simultaneous multithreading (SMT) capability of the POWER8.
•Exploiting the NVlink capability by porting some parts of TELEMAC to Nvidia Tesla
P100 GPUs.

•Enables users to extract more performance from the same number of cores.

Introduction

TELEMAC-MASCARET is an open-source suite of
solvers for free surface flow modelling. This work refers
to the wave propagation module TOMAWAC.

Figure 1: Wave propagation near the port of Saint-Malo. Image
taken from the TELEMAC website.

The code is able to run on thousands of cores thanks to
efficient parallelisation with MPI. However, the speedup
observed using MPI has a limit. Each MPI process com-
putes a fraction of the mesh and as the number of MPI
processes increases, the part of the mesh to work on is
reduced, and so are the benefits of the parallelisation. In
this poster we show how to solve this problem with the
use of hybrid MPI/OpenMP.

The testing machine

This work uses the Panther and Paragon POWER8 clus-
ters at the Hartree Centre at Daresbury Laboratory.
Each node of the cluster is made of two POWER8 CPUs
and 4 GPUs (either K80 or P100-SXM2+NVLink).
Each CPU comprises 8 cores and is able to run 128
hardware threads (8 threads on each core) thanks to
the SMT8 capability of POWER8.
Our work has shown that using 8 threads per core
doesn’t provide the best performance for TOMAWAC.
In our benchmarks the best execution time was never
reached when using 8 threads per core but when using
2 or 4.

Solution

Profiling the code shows that 95% of the time is spent
in a computationally demanding quadruple nested loop.
These loops have no memory dependency on each
other, therefore the outer loop can be parallelised with
OpenMP using the parallel do directive.

Figure 2: Time to solution for the original pure MPI implementation

Results

Figure 2 shows the timing for TOMAWAC to complete
a simulation as a function of the number of nodes and
SMTs used. Using SMT2 is always useful, but not
SMT4. This is mainly because the number of elements
that each MPI process uses to carry out the computa-
tions is too low in our example case, future work will look
at bigger cases that are not currently typical of current
users of TELEMAC-MASCARET. The same figure also
shows that even if SMT is useful it is not as good as
having a single physical core for each thread: using 1
node with SMT4 allows use of 64 MPI processes. This
is also true for 4 nodes with SMT1, but the latter is
much faster.

Figure 3 shows the time to solution of TOMAWAC when
using the loop parallelised with OpenMP in addition to
the existing MPI implementation. One MPI process is
used per processor but another possibility would be to
use 16 MPI processes per processor and use SMT to run
the OpenMP threads. This last method has proven to
be a little less efficient in our benchmarks.

Figure 3: Time to solution for the hybrid MPI/OpenMP implemen-
tation

Table 1 presents the execution time of the two versions,
using SMT or not. It can been seen that without
SMT, the hybrid MPI/OpenMP version shows worse
performance than pure MPI. However with SMT, the
MPI version is not always the best. This is because the
number of elements per subdomain, and hence per MPI
process is too low. Conversely when we use the hybrid
version which spawns less MPI processes and use SMT
to create more OpenMP threads there is still a clear
acceleration.

1 node 2 nodes 4 nodes 8 nodes
MPI 7195 3178 1687 887

MPI SMT(2/4) 4927 2716 1493 888
MPI/OpenMP 11986 4104 2123 1108

MPI/OpenMP SMT4 5622 2492 1259 655
Table 1: Comparison of the time to solution for the pure MPI and
the hybrid MPI/OpenMP versions

Conclusions

A method has been presented to improve the execution
speed of the TELEMAC-MASCARET wave propaga-
tion module (TOMAWAC) when the number of elements
per MPI process is relatively small (about 140 elements
or less). This method demonstrates that it is possible
to get up to 35% more performance by using existing
hardware more efficiently.

Future work

In the future we will make use of the GPUs in the
POWER8 platform to offload the loop. We hope that
thanks to NVLink the time spent in sending data to the
GPU and retrieving data from the GPU will be negligi-
ble. We will implement this offloading with the two main
set of directives available: OpenACC and OpenMP.

Miscellaneous

While porting TELEMAC-MASCARET on POWER8
we found bugs in both compilers gfortran and xlf that
prevented the compilation of the suite of solvers. All of
them have been reported to the respective maintainers
with a reproductible test case. The bug in xlf has been
fixed, the one in gfortran is still under investigation.

Acknowledgements

This work is supported by the Hartree Centre through
the Innovation Return on Research (IROR) programme.

Contact Information

•Email: judicael.grasset@stfc.ac.uk

mailto:judicael.grasset@stfc.ac.uk

