# MANCHESTER 1824

## The University of Manchester

## **1.** Aim

- To determine whether the Knights Landing (KNL) processor is fast enough to analyse bone in a clinical setting.
- from this capability.



Specification

- $\geq$  64 processor cores, each with the speed of 1.3 GHz.
- 4 hyperthreads per processor core.
- High capacity DDR4 memory of 96 GB.
- High bandwidth MCDRAM of 16 GB.
- > 512-bit SIMD instruction with each core operates vector of size 8 per clock cycle.
- > Three types of memory modes: Cache mode, Flat mode and Hybrid mode.



Figure 2 : Total execution time of Xeon and KNL on ParaFEM

Figure 3: Speed up of Xeon and KNL on ParaFEM

- The performance of the Xeon and the KNL processors are compared using the code from an open-source finite element software, ParaFEM (Smith, Griffiths and Margetts, 2013). • One KNL processor performs better than one Xeon processor, but worse than two Xeon processors on ParaFEM.
- The clock speeds of a KNL processor with one hyperthread and a Xeon processor are 83.2 GHz and 32.4 GHz respectively.
- Theoretically, one KNL processor should perform better than one and two Xeon processors. • The factors that cause the difference between the theoretical and the experimental performance
- may include the parallel overhead and the parallelism of the code. • The parallel overhead is caused by the increase of the amount of time needed to coordinate the
- parallel tasks as the number of processor cores increase. • Additionally, the socket of the KNL processor is smaller than that of the Xeon processor, making
- the KNL processor require less power and cooling. • The speed up with respect to one core is the ratio of analysis time of one processor core to the total number of processor cores used in parallel execution.
- The speed up of the KNL processor is better than that of the Xeon processor.
- Due to the less advanced processor cores in the KNL, the benefit obtained from executing the software in parallel is more significant in the KNL processor than the Xeon processor.

# **Microstructural Analysis of Bone Using the Knights Landing Processor** Name: Li Juan Chan **Project Supervisor: Dr. Lee Margetts**

## 4. Optimisation of Code using OpenMP



-KNL



- OpenMP consists of three main components, which are compiler directives, runtime library routines and environment variables.
- OpenMP directives are included in the source code to advise the compiler that the program can be run using the hyperthreading feature of the KNL processor. • Using both MPI processes and OpenMP threads reduces the analysis time compared to using
- MPI processes only as shown in Figure 5.
- Even though the improvement may not be significant, the benefit is still essential as the optimisation using OpenMP can be done in no time.



Figure 6: Unstructured mesh (Source: TrueGrid, accessed 1 Dec 2018)

- The bar chart shows that the analysis time for the structured mesh is significantly lower than that of the unstructured mesh.
- An example of an unstructured mesh is shown in figure 3 in which the stiffness matrices of all the elements may be different.
- The structured mesh is the mesh in which the stiffness matrices are the same.
- The structured mesh can be used in bone analysis as the voxels in the bone image have the same geometry and may be assumed to have the same material properties.



- The bone images are sent to a computer to reconstruct the images into 3D model. • The voxels in the 3D model are converted to hexahedral elements and are analysed using the Finite Element Method.

• OpenMP is a standardised Application Program Interface (API) for shared memory system.

Figure 7: Comparison of analysis time for different cases

![](_page_0_Picture_62.jpeg)

Figure 10: X-ray tomography picture of healthy trabecular bone (Source: Levrero-Florencio *et al.*, 2016) Figure 11: X-ray tomography picture of diseased trabecular bone (Source: Levrero-Florencio et al., 2016) Figure 10 shows the picture of a healthy trabecular bone whereas figure 11 shows the picture of

- a low density diseased trabecular bone.
- written by the University of Sheffield.
- Sheffield.

## 8. Potential Hardware for Further Evaluation

![](_page_0_Picture_68.jpeg)

Figure 12: Cavium's ThunderX2 (Source: Kennedy, 2017)

- ARM-based supercomputer in the UK, with the code name of 'Isambard'.
- energy efficiency.
- clock speed processing units.
- only tens of processor cores.
- performance of GPUs.
- processor in embarrassingly parallel software.

Codreanu, V., Rodriguez, J. and Saastad, O. W. (2017). Best Practice Guide - Knights Landing, January 2017. Available at: http://www.praceri.eu/best-practice-guide-knights-landing-january-2017/, (Accessed: 1 Dec 2018) Kennedy, P. (2017). Cavium ThunderX2 Dual Socket System Spotted Live. Available at: https://www.servethehome.com/cavium-thunderx2-dualsocket-system-spotted-live/. (Accessed: 1 Dec 2018) Levrero-Florencio, F., Margetts, L., Sales, E., Xie, S., Manda, K. and Pankaj, P. (2016). 'Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach', Journal of the Mechanical Behavior of Biomedical Materials, 61, pp. 384-396, [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S1751616116300728 (Accessed: 1 Dec 2018). NDT Resource Center. (no date). Computed Tomography. Available at: https://www.ndeed.org/EducationResources/CommunityCollege/Radiography/AdvancedTechniques/computedtomography.htm, (Accessed: 1 Dec 2018). Pette, B. (2018). NVIDIA Transforms the Workstation for the Age of Deep Learning. Available at: https://blogs.nvidia.com/blog/2018/03/27/quadrogv100-deep-learning-simulation/, (Accessed: 1 Dec 2018). Smith, I. M., Griffiths, D. V. and Margetts, L. (2013). Programming the Finite Element Method. 5th edn. West Sussex: Wiley & Sons Ltd. Top500. (2018). November 2018. Available at: https://www.top500.org/lists/2018/11/, (Accessed: 1 Dec 2018). TrueGrid. (no date). Femur. Available at: http://www.truegrid.com/bone3.html, (Accessed: 1 Dec 2018)

## 7. Further Work

![](_page_0_Picture_80.jpeg)

![](_page_0_Picture_81.jpeg)

• The voxels in the bone image are converted to hexahedral elements using the MATLAB script

• It provides an input deck for ParaFem, run in ARCHER and the KNL processor. • The output of this project is a fast computer program for analysing bone model for the KNL processor. This will be used by UK researchers, particularly in Manchester, Edinburgh and

![](_page_0_Picture_85.jpeg)

Figure 13: NVIDIA Quadro Volta GV100 (Source: Pette, 2018)

• The Cavium ThunderX2 processor is based on ARMv8 architecture and is integrated into the • It is comparable to the KNL processor because ARM architecture processor is known for its high

• The KNL processor inherits some of the characteristics of GPUs, in which it consists of many low

• GPUs may contain hundreds to thousands of processor cores, while KNL processor contains

• The existence of latency of data transferring between host processors and GPUs may limit the

However, GPUs are a lot cheaper than the KNL processor and may perform better than the KNL

• NVIDIA Quadro Volta GV100 is a GPU, which is specially designed to give superior performance in deep learning and is used in the fastest supercomputer in the world, 'Summit' (Top500, 2018).

## **9.** References