Runaway Transition in Irreversible Polymer Condensation with Cyclisation

Maria Panoukidou, Davide Michieletto

University of Edinburgh, School of Physics and Astronomy

Topologically Active Materials

Materials that change their mechanical properties in time by alterations of their topology.

J. Palacci et al., vol 339, Science 2013

T. Sanchez et al., vol 491, Nature 2012

DNA manipulation in nature

Genome topology

genome topological manipulation by proteins such as Recombinase, SMCs, etc.

Nucleosomal scale

Doğan, E.S., Liu, C. Nature Plants 4, 521–529 (2018).

Nature's tools

Could these proteins be "used" to make "topological" complex fluids?

Topologically Active Biomaterials

DNA biomaterials: what is the role of enzymes?

Micro-rheology

800 nm PVP-coated polystyrene beads

+

DNA solution

D. Michieletto *et al. Nat Commun* **13**, 4389 (2022)

0.1 Lag-Time,t [s]

DNA Ligation

DNA ligase is a vital protein that consumes energy to link DNA fragments in vivo.

It is routinely used in the field of molecular biology to create recombinant genes

DNA Ligation

Ligate linear chains

DNA Ligation

Polymer condensation Smo

$$\frac{dn_l}{dt} = \frac{1}{2} \sum_{i+j=l} n_i n_j k_1(i,j) - \sum_i n_i n_l k_1(i,l) - n_l k_o(l)$$

Linear Chain Terms Ring Chain Term

< l > (t)

In principle k_1 , k_o depend on the polymer length

Smoluchowski equation - Mathematical Model of Ligase

$$t) = \frac{\sum_{i} n_i(t) l_i}{\sum_{i} n_i(t)}$$

Solving the ODEs

Smoluchowski model

$$\frac{dn_l}{dt} = \frac{1}{2} \sum_{i+j=l} n_i n_j k_1(i)$$

De Gennes:
$$\kappa_1 \left(\frac{1}{l_o_i^{\alpha}} + \frac{1}{l_o_j^{\alpha}} \right) \left(l_o_i^{\nu} \right)$$

Rate of ring to linear chains formation

$$\kappa = \frac{2\kappa_o}{n_o\kappa_1}$$

where n_o is the number density of monomeric chains with length l_o

P. De Gennes, 76(6):3316-3321 JCP (1982),

P. De Gennes. 76(6):3322–3326 JCP (1982)

 $(i,j) - \sum_{i} n_i n_i k_1 (i,l)$ $n_l k_o(l)$ $+ l_{o_{i}}^{\nu}$ κ_o 3ν

- $\kappa > 1$ Ring chains dominated regime
- $\kappa = 1$ Equal amount of ring and linear chains
- $\kappa < 1$ Linear chains dominated regime

Polymer physics

*This regime does not exist for all polymers, usually seen at low molecular weight polymers.

Rubinstein, M. and Colby, R. H. (2003) Polymer physics.

$$\phi^* = c^* v_{mon} \qquad c^* = \frac{3N}{4\pi R_g^3}$$

Simulation set up

Ligase in simulations

- Polymer length N = 174 beads, $\sigma = 38bp$
- Number of molecules $M_{mol} = 200$
- Concentrations $\frac{c}{c^*} = \{0.01, \dots, 1\}$
- Relaxation time τ_B dependent on concentration
- Ligation rate / rate with which ligase is recruited = $10^{-1} \tau_B^{-1}$ equivalently: every 100 steps a ligation is attempted with probability of success 0.1

Topology reconstruction

Towards the overlapping concentration

6.5kb-

Linear changes can be digested by exonuclease

Runaway transition point

Runaway := the regime at which at least one chain permanently escapes cyclisation

Runaway transition point

Runaway := the regime at which at least one chain permanently escapes cyclisation

Grey = noconnection Light blue = 1connection Dark blue = 2connections

Simulation box

Runaway transition point

Runaway := the regime at which at least one chain permanently escapes cyclisation

Grey = noconnection Light blue = 1connection Dark blue = 2connections

Simulation box

Micro-rheology

$C/C^* \rightarrow -ve \ 0.01 \ 0.1 \ 0.25 \ 1 \ 2.5 \ 0.01e$

LM = Linear MonomersRM = Ring MonomersMulti = various lengths of high $M_w structures$

Micro-rheology

$$MSD(t) = < (r(t_o) - r(t_o + t))^2 >$$

$$D = \lim_{x \to \infty} MSD(t)/6t \qquad \eta = \frac{k_B T}{6\pi Dr}$$

Micro-rheology

 $MSD(t) = < (r(t_o) - r(t_o + t))^2 >$

$$D = \lim_{x \to \infty} MSD(t)/6t \qquad \eta = \frac{k_B T}{6\pi Dr}$$

Conclusions

- The key adimensional parameter controlling growth kinetics is $\kappa = 2\kappa_o/n_o\kappa_1$.
- •Our results suggest that it may be possible to tune the final topological composition of ligated systems by judiciously choosing c/c*.
- •It may be possible to couple dissipative DNA breakage reactions with ATP-consuming ligation to create dense solutions of self-sustained topologically active viscoelastic fluids.

Acknowledgements

Valerio Sorichetti

Martin Lenz

Simon Weir Yair Gutierrez Fosado

Davide Michieletto

Topologically Active Polymers (TAP) Lab

