Runaway Transition in Irreversible Polymer Condensation with Cyclisation

Maria Panoukidou, Davide Michieletto

University of Edinburgh, School of Physics and Astronomy

Topologically Active Materials

Materials that change their mechanical properties in time by alterations of their topology.

T. Sanchez et al., vol 491, Nature 2012

[^0]
DNA manipulation in nature

Genome topology
genome topological manipulation by proteins such as Recombinase, SMCs, etc.

Nature's tools

Could these proteins be "used" to make "topological" complex fluids?

Topologically Active Biomaterials

DNA biomaterials: what is the role of enzymes?

DNA Ligation

DNA ligase is a vital protein that consumes energy to link DNA fragments in vivo.
It is routinely used in the field of molecular biology to create recombinant genes

DNA Ligation

Ligate linear chains

DNA Ligation

Ligate linear chains

Polymer condensation

$$
\begin{gathered}
\frac{d n_{l}}{d t}=\frac{1}{2} \underbrace{\sum_{i+j=l} n_{i} n_{j} k_{1}(i, j)-\sum_{i} n_{i} n_{l} k_{1}(i, l)-n_{l} k_{o}(l)}_{\text {Linear Chain Terms }} \text { Ring Chain Term } \\
<l>(t)=\frac{\sum_{i} n_{i}(t) l_{i}}{\sum_{i} n_{i}(t)} \\
\text { In principle } k_{1}, k_{o} \text { depend on the polymer length }
\end{gathered}
$$

Solving the ODEs

Smoluchowski model

$$
\begin{aligned}
& \left.\frac{d n_{l}}{d t}=\frac{1}{2} \sum_{i+j=l} n_{i} n_{i} k_{1}(i), j\right)-\sum_{i} n_{i} n_{l} k_{1}(i, l)-n_{l} k_{o}(l) \\
& \text { De Gennes: } \kappa_{1}\left(\frac{1}{l_{o}^{\alpha}}+\frac{1}{l_{o}^{\alpha}}\right)\left(l_{o}^{v}+l_{o}^{v}\right)
\end{aligned}
$$

Rate of ring to linear chains formation

$$
\kappa=\frac{2 \kappa_{o}}{n_{o} \kappa_{1}}
$$

$$
\begin{array}{ll}
\kappa>1 & \text { Ring chains dominated regime } \\
\kappa=1 & \text { Equal amount of ring and linear chains }
\end{array}
$$

$$
\text { where } n_{o} \text { is the number density }
$$ of monomeric chains with length l_{o}

Polymer physics

$\underbrace{0}_{\text {dilute regime }} \boldsymbol{\phi}^{*}$ Qorlap $_{\text {fraction }}$
$\phi^{*}=c^{*} v_{\text {mon }} \quad c^{*}=\frac{3 N}{4 \pi R_{g}^{3}}$
*This regime does not exist for all polymers, usually seen at low molecular weight polymers.

Rubinstein, M. and Colby, R. H. (2003) Polymer physics.

Simulation set up

- Polymer length $N=174$ beads, $\sigma=38 b p$
- Number of molecules $M_{\text {mol }}=200$
- Concentrations $\frac{c}{c^{*}}=\{0.01, \ldots, 1\}$
- Relaxation time τ_{B} dependent on concentration

- Ligation rate /
rate with which ligase is recruited $=10^{-1} \tau_{B}^{-1}$ equivalently: every 100 steps a ligation is attempted with probability of success 0.1

Topology reconstruction

Towards the overlapping concentration

Microstructure as $c \rightarrow c^{*}$

Gel Electrophoresis on 1288 plasmid

Linear changes can be digested by exonuclease

Removing them from the solution, thus differentiating bands of linear or ring DNA

Runaway transition point

Runaway := the regime at which at least one chain permanently escapes cyclisation

Runaway transition point

Runaway := the regime at which at least one chain permanently escapes cyclisation

Concentration Network Simulation box

Grey = no connection Light blue = 1 connection Dark blue $=2$ connections

Runaway transition point

Grey = no

Runaway := the regime at which at least one chain connection Light blue = 1 permanently escapes cyclisation

Concentration Network Simulation box

Micro-rheology

$c / c^{*} \rightarrow$-ve $0.010 .1 \quad 0.25 \quad 1 \quad 2.5 \quad 0.01 \mathrm{e}$

LM = Linear Monomers
RM = Ring Monomers
Multi = various lengths of high
M_{w} structures

Micro-rheology

LM = Linear Monomers
RM = Ring Monomers
Multi = various lengths of high
M_{w} structures

$$
\begin{aligned}
& \operatorname{MSD}(t)= \\
& <\left(r\left(t_{o}\right)-r\left(t_{o}+t\right)\right)^{2}>
\end{aligned} \quad D=\lim _{x \rightarrow \infty} M S D(t) / 6 t \quad \eta=\frac{k_{B} T}{6 \pi D r}
$$

Micro-rheology

LM = Linear Monomers
RM = Ring Monomers
Multi = various lengths of high
M_{W} structures

$$
\begin{aligned}
& \operatorname{MSD}(t)= \\
& <\left(r\left(t_{o}\right)-r\left(t_{o}+t\right)\right)^{2}>
\end{aligned} \quad D=\lim _{x \rightarrow \infty} M S D(t) / 6 t \quad \eta=\frac{k_{B} T}{6 \pi D r}
$$

Conclusions

Acknowledgements

- The key adimensional parameter controlling growth kinetics is $\kappa=2 \kappa_{o} / n_{o} \kappa_{1}$.
- Our results suggest that it may be possible to tune the final topological composition of ligated systems by judiciously choosing $\mathrm{c} / \mathrm{c}^{*}$.
- It may be possible to couple dissipative DNA breakage reactions with ATP-consuming ligation to create dense solutions of self-sustained topologically active viscoelastic fluids.

Valerio Sorichetti

Martin Lenz

Davide Michieletto

Topologically Active Polymers (TAP) Lab

[^0]: J. Palacci et al., vol 339, Science 2013

