An Adaptive Cost Function for Multi-Fidelity Optimisation

Mark Pellowe, NCCAT, Loughborough University Supervised by Prof. Gary Page and Prof. Adrian Spencer

Loughborough

Introduction to Multi-Fidelity Optimisation

- Uses a hierarchy of data sources
- Each source has a different "cost"
- GP Predictions ····· El high scaled
 HF Initial - El high
 HF Function - El low
 ☆ LF Initial
- LF Function

What is Fidelity?

- A hierarchy of different representations of a system
- Quality depends on several factors
 - Spatial, temporal, different physical assumptions
- Generally, higher fidelity = higher cost

Accuracy of Data Relative to Truth

DEFINING COST AND CHEAPER ROUTES

Adapting Cost Based on States

 Cheaper dimensions exist for the next observation based on current location

Cheaper to change flap angle than the width of the wings

 Next sample is determined by "utility" or "relative value"

Cost function

- Current cost function: \bullet
 - Defined as an integer per fidelity or a function
 - No consideration of already observed data
- New cost function: \bullet

Iniversity

- Defined as the level of change from a previous observation
- Weighted to show some parameters are cheaper to change CC

$$\begin{array}{c} \hline \\ low fidelity = 1 \\ OR \\ high fidelity = 5 \\ \end{array} \begin{array}{c} low fidelity = f_l(\theta_1, \dots, \theta_n) \\ OR \\ high fidelity = f_h(\theta_1, \dots, \theta_n) \end{array} \end{array}$$

$$cost_{intrinsic} = function(\theta_1, ..., \theta_n) > 0$$

$$cost_{change} = \sum_{i=1}^{n} \lambda_i \delta(\theta_n - \theta_{nprev})$$

$$ost_{total} = cost_{intrinsic}(\theta_1, \dots, \theta_n) + cost_{change}(\theta_1, \dots, \theta_n, \theta_{1prev}, \dots, \theta_{nprev})$$

Loughborough $\theta = input$ $\delta = 0$ if change is 0, 1 otherwise. λ = scaling coefficient

MODEL PERFORMANCE ON TEST FUNCTIONS

Models used in Comparison

• SF-OC: Single fidelity with a non-dynamic cost model

- SF-AC: Single fidelity with novel cost model
- MF-AC: Multi fidelity with novel cost model
- MF-OC: Multi fidelity with a non-dynamic cost model

What a Single **Search Looks Like**

 Multi-Fidelity searches always begin more expensive

 Adaptive costs allow for faster convergence

Loughborough University

MFAC

SFOC

Average descent

Optimum Searches with Scale 0

- Correlation = 0.56
- Higher ratios mean less search space within budget

MFAC

MFOC

SFAC

Rolls-Royce[®]

 Also mean less utility "value" for MF optimisers

Optimum Searches with Scale 1.0

Correlation = 0.94

 Higher degree of correlation = Better MF models

Optimising Conditions for Aerofoils

TESTS ON REAL DATA

Aerofoils

- Wind tunnel
 - Experimental measurements
 - The "most true" but expensive
- SU2
 - Steady flow CFD solver
 - Cheaper but heavily biased by simulation parameters
- Xfoil
 - Potential flow + boundary layer solver
 - Very cheap and reliable in parts
 - Still biased

Aerofoils

Loughborough University

- Multi-fidelity approaches ulletare superior to single fidelity ones
- The scaling factors have large effects on single fidelity.
 - Smaller effects on multifidelity approaches

SFOC Average descent

MFAC

Conclusions

- Multi-fidelity optimisation outperforms single fidelity within the same budget
 - Assuming lower fidelity has a suitable degree of correlation with the "truth"

- Adaptive cost treatment does not harm optimisation
 - A cheaper exploitative dimension can be efficient and useful, even if the solution does not exist down the path

THANK YOU!

