

Digital wave flume using multi-fidelity approaches

Xiaoyuan Luo^a, Vijay Nandurdikar^a, Sang-ri Yi^b, Alistair Revell^a, Ajay B. Harish^a

^a Faculty of Science and Engineering, University of Manchester, UK
 ^b NHERI SimCenter, University of California, Berkeley, CA, USA

Research Motivation

Fg.1. Tsunami phenomenon¹

Fg.2. Hurricane²

Fg.3. Floating wind turbine ³

Fg.4. Ocean wave energy harvest⁴

¹Crossing <u>swells</u>, consisting of near-cnoidal wave trains. Photo taken from Phares des Baleines (Whale Lighthouse) at the western point of <u>Île de Ré</u> (Isle of Rhé), France, in the <u>Atlantic Ocean</u>.

²<u>Hurricane Paulette</u>, in <u>2020</u>, is an example of a <u>sheared</u> tropical cyclone, with deep <u>convection</u> slightly removed from the center of the system ³Wang, C.M., Utsunomiya, T., Wee, S.C. and Choo, Y.S., 2010. Research on floating wind turbines: a literature survey. *The IES Journal Part A: Civil & Structural Engineering*, *3*(4), pp.267-277.

⁴ Huang, B., Wang, P., Wang, L., Yang, S. and Wu, D., 2020. Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview. *Nanotechnology Reviews*, *9*(1), pp.716-735.

Smoothed Particle Hydrodynamics (SPH)¹

The University of Manchester

Mesh-based Method

Meshless Method

- Computational points: Nodes ----- > Particles
- Each particle is associated with **field variables** such as mass, momentum, velocity, position, energy, etc.
- Particles are described through Lagrangian derivatives Rate of change along with the trajectory

¹Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: Theory and application to non-spherical stars. *Monthly Notices of the Royal Astronomical Society*, *181*(3), 375–389

Smoothed Particle Hydrodynamics

 Each particle has an associated weight determined by a kernel function, which describes the contribution of the neighboring particles to the physical quantities (such as pressure or velocity)

Fig. The concept of Smoothed Particle Hydrodynamics¹

¹Dai, Z., Wang, F., Huang, Y., Song, K., & Iio, A. (2016). SPH-based numerical modeling for the post-failure behavior of the landslides triggered by the 2016 Kumamoto earthquake. *Geoenvironmental Disasters*, *3*(1)

Experimental Setup

Fig. Left: resistance wave gauges and acoustic velocimeters positioned in hydraulic wave flume. Right: instrumented specimen and front side pressure gauges, wave gauge, and acoustic doppler velocimeters. Bottom: Profile views of experimental flume¹

¹Tomiczek, T., Prasetyo, A., Mori, N., Yasuda, T., & Kennedy, A. (2016). Physical modelling of tsunami onshore propagation, peak pressures, and shielding effects in an urban building array. *Coastal Engineering*, *117*, 97–112.

- Hybrid Tsunami Open Flume in Ujigawa (HyTOFU) Laboratory, Kyoto University
- 45 m long, 4 m wide, and 2 m deep wave flume, slope 1:10
- A single specimen (building) instrumented with pressure gauges was placed on flat platform
- Solitary waves was generated using wave piston
- Free surface elevation was measured in 10 different locations using resistancetype Wave Gauges

MANCHESTER

Fig. 5. HyTOFU DualSPHysics setup

Dynamic boundary conditions¹

- domain → particles
- Grey particles solid particles (walls, building)
- Red particles moving particles (piston wavemaker)
- Blue particles fluid particles (water)

Numerical Setup

Wave parameters

Still water depth - 0.7m Wave type - Solitary wave Wave height - 0.4m

Wave gauge

MANCHESTER

The University of Manchester

 WG6 (x=22.69)
 0.79
 0.40

 WG5 (x=21.50)
 WG4 (x=20.50)
 0.79
 0.40

 WG3 (x=17.50)
 WG2 (x=14.50)
 0
 0

 WG1 (x=9.15)
 0
 0
 0

 WG8 (x=22.99)
 0
 0
 0

 WG1 (x=24.09)
 WG1 (x=24.89)
 0
 0

Fig. HyTOFU set up with the location of the wave gauges

¹Crespo, A. J. C., Domínguez, J. M., Rogers, B. D., Gómez-Gesteira, M., Longshaw, S., Canelas, R., Vacondio, R., Barreiro, A., & García-Feal, O. (2015). DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). *Computer Physics Communications*, *187*

Convergence study

Fig. Convergence study associated with wave gauges 1, 2 and 3

•	Initial interparticle distance (dp) Wave height (W) = 0.4 m	dp	H/dp	Error in peak height	Error in wave arrival time	Compute time
		0.1	4	8.87 %	-2.20 %	78.51s
•	dp = 0.0125m showed superior	0.025	16	1.96 %	-3.14 %	97854s
	agreement with experimental data	0.0125	32	1.86 %	1.57 %	110534s

Smoothened Particle Hydrodynamics: Results

Free surface elevation agreement is observed in initial flat and sloping sections (WG1, WG2, WG3) and test section (WG4, WG5)

MANCHESTER

The University of Manchester

- Unable to validate accuracy of free surface elevation representation in front (WG6) and back (WG9) of the specimen due to limitations in data recording
- Overall. wave arrival time
 and wave height show
 effective validation of the
 numerical model

1/25/2024

Fig. 7. Comparison of free surface elevation data

Wave loading evaluation

- Comparison of different methods for evaluation of structural response (a)
- Forces evaluated using different wave heights
 - SPH model (b)
 - ASCE (c)
 - Analytical (d)

Why maximum drag force does not consistently increase as initial wave height increase?

Fig. 8. Evaluation of wave loading with different initial wave heights

Build 25 wave gauges

To check if there is breaking point and dissipation happens in different initial wave height case

- Same: Initial wave height = 0.4m, 0.9m
- Big dump: Initial wave height = 0.5m, 0.6m
- Little dump: Initial wave height = 0.7m, 0.8m

Uncertainty Quantification

Uncertainty Quantification

- Probabilistic structural dynamic analyses are performed to identify the realistic range of building responses
- Provides more reliable estimates for practical engineering applications
- Uncertainties in structural responses typically arise from two primary sources
- 1. Parameters associated with coastal wave
- 2. Parameters associated with building (structures)

Forward UQ (Structures) : Quantifies the uncertainty in output parameters by propagating the uncertainties present in selected input parameters

Structural input uncertainty

Structural response probability

Forward UQ: Inputs

Random Variables

- Notable concentration around middle of acceleration range
- Mean = 0.0010 m/s^2 Standard deviation = 0.0001 m/s²

MANCHESTER The University of Manchester Yield strength versus peak floor acceleration and stiffens versus peak

floor acceleration plots displayed a random distribution with **no** discernible correlation

Floor weight exhibited a strong negative correlation with peak floor acceleration

The University of Manchester

Reduce domain size

The University of Manchester

Reduce domain size & Simulate more cases

Graph Sample and Aggregate (GraphSAGE)

GraphSAGE in Wave Propagation Prediction

The University of Manchester

Advantage for using GraphSAGE:

- Considering the relationships between nodes
- Incorporating node features
- Learning node embeddings
- Predictive capability

	Train_x	Train_y	1.0 -	WG5	-*- WH 0.8 (SPH)
Training set (Initial wave height 0.4m)	Wave Gauge 4	Wave Gauge 5	0.8 -		
Validation set (Initial wave height 0.5m)	Wave Gauge 4	Wave Gauge 5	0.6 - E g. 0.4 -		
Testing set (Initial wave height 0.8m and 0.9m)	Wave Gauge 4	Wave Gauge 5	0.2 -		
				t (ms)	

GraphSAGE in Wave Propagation Prediction

GraphSAGE at Wave gauge 5

- The arrival time values are not important
 Structural response is not depending on arrival time
- Wave form is only important information! as we use this as boundary conditions to CFD

Conclusions

- Full fidelity CFD simulations are computationally expensive
- Proposed a promising methodology by augment surrogate model with CFD to reduced computational cost without accuracy lost
- Wave form has been successfully captured using GraphSAGE
- Coupling UQs with CFD simulations gives more realistic range of building responses

Future Work

MANCHESTER 1824

Future Work

Appendix 1

- (a) WG1
 (b) WG2
 (c) WG3
 (d) WG4
 (e)WG5
 (f) WG7
- (g) WG8
- (h) WG9
- (i) WG10

Fig. Free surface elevation for different wave heights for wave gauges