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Abstract 

This document contains the notes on multiple scattering theory on which my real space package of 

codes is based.  These notes are intended to be a full and detailed set of formulae which I need never 

derive again!  They are based as closely as possible on the review article of Lloyd and Smith [1], 

Pendry’s book [4] and Brink and Satchler [9] on angular momentum, all of which seem reliable 

references.  Gonis and Butler [11] must be a good book too, but I haven’t yet been through it properly.  

Errors in other published works on multiple scattering theory are noted whenever I find them.  All the 

key results have been tested in full numerical calculations.  At present only non-relativistic scattering 

by spherical potentials is treated. 
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1 Preamble 
These notes derive a formula for the 1-electron Green’s function of an arbitrary set of “scatterers”, 

essentially atomic potentials, based on the scattering solutions for a single scatterer.  The full system 

may be a periodic crystal but doesn’t have to be.  Multiple scattering theory, through its central 

quantity, the scattering path operator, builds up the full wave function or Green’s function as a sum 

to all orders over all the scattered waves from the individual atoms, including correctly all the 

interferences.  For a periodic crystal these interferences produce energy bands, gaps etc.  For 

molecules or clusters they produce molecular orbitals.   

As always with scattering theory, there is much to be learned from studying the analytical properties 

of the various wave functions, Green’s functions and scattering matrices as a function of a complex 

energy variable.  Indeed, working at complex energies is frequently useful in numerical calculations 

(see section 12).  I don’t pay much attention to this aspect in these notes.  The references (especially 

the works of Faulkner) treat it with the importance it deserves. 

The essential language of this version of multiple scattering theory is that of the partial wave 

(angular momentum) analysis of potential scattering, generalised from a single “atomic” potential to 

a non-overlapping assembly of such scatterers.  We nearly always have it in mind that each of these 

atomic potentials will be of so-called muffin-tin form – spherical within some cut-of radius (the 

muffin-tin radius) and zero beyond it1.  In this language, atoms are characterised by a set of phase 

shifts.  When these phase shifts are small the scattering is weak and something perturbative like a 

pseudopotential method is a viable alternative.  When the phase shifts are large, perhaps passing 

through / 2  as a function of energy (resonant scattering), the (multiple) scattering is strong and a 

possible alternative approach would be some form of tight binding.  Multiple scattering theory 

elegantly encompasses the whole range of possible potentials and binding strengths within the 

same, exact, formalism. 

These notes are concerned only with this formalism.  None of the many possible illuminating 

examples of it in action are described.  Somebody should do this!   

                                                           
1 There is no shortage of theory on non-spherical atomic potentials that may fill space with no interstitial 
regions – see Gonis and Butler [11].  Most of this results in single-scatterer t matrices that are not diagonal in 
angular momentum, which is easily accommodated within the formalism.  However, there are probably 
pathological circumstances (oddly shaped potentials etc) for which the convergence of the multiple scattering 
series don’t necessarily converge.  We don’t consider such things in these notes. 
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2 Summary of Key Results 
This section summarises the key results of the theory.  Details are given on the following sections 

and appendices. 

 

2.1 Notation 
Angular Momentum 

When possible we denote the angular momentum quantum numbers by the following double 

indices: 

 
( , )

( , )

L l m

L l m



 
 (2.1) 

Bessel functions 

The forms defined in Schiff are used, but the argument is just written as r , rather than the strictly 

correct r  , just to simplify equations. 

 

Free space solutions 

For simplicity we define upper case Bessel functions as follows: 

      ˆ
L l LJ j r Yr r  (2.2) 

and likewise for Neumann and Hankel functions.  Even though the radial functions may be real, the 

vector function is complex because of the spherical harmonic.  We use the following notation to 

denote this: 

 
     

     

*

*

ˆ

ˆ

L l L

L l L

J j r Y

H h r Y 





r r

r r
 (2.3) 

 

Single scatterer solutions 

In a similar way, the following types of single-scatterer solution are used 

     

     *

ˆ

ˆ

i i
L l L

i i
L l L

Z r z r Y

Z r z r Y





r

r
 

 

2.2 The single scatterer 

We want to find the scattering solutions of the Schrödinger equation 

        0 , ,v       k kr r r  (2.4) 
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where 0  is the kinetic energy and  v r the scattering potential, assumed to be spherically 

symmetrical.  The wave functions can obviously be decomposed into radial and angular parts, the 

latter being spherical harmonics.  The solutions can be written in terms of the standard regular radial 

solution lR  as follows: 

          * ˆˆ, 4 ,li kl
l L L

L

i e R r k Y Y
    k r r k  (2.5) 

where the radial solution is regular at 0r   and satisfies the boundary condition that outside the 

muffin-tin radius 

          , cos sinl l l l lR r k j kr k n kr k    (2.6) 

defining the phase shift l .  The t matrix of the single scatterer is then given by 

      1
sin li k

l lt k k e
k


   (2.7) 

It’s useful to introduced two ancillary radial solutions  ,lz r k  and  ,lx r k , the first regular and the 

second irregular, defined in section 3.1.  These are normalised in an especially convenient way for 

this version of multiple scattering theory. 

Any real calculation starts with these quantities – one determines the phase shifts, wave functions 

and t matrices of each single “atomic” potential by the standard methods of partial wave scattering 

(matching logarithmic derivatives etc).  These, together with the location of each potential, are the 

essential inputs to any multiple scattering calculation. 

 

2.3 The free space Green’s function 

Consider two sites or scatterers with the geometric definitions indicated in the following diagram: 

 

 

The free space Green’s function, referred to the above geometry, is  

      0 ,
,

+ , ij
i j L L L L

L L

G J g J 



  r R r R r r  (2.8) 

  

Site i 

Origin 

Site j 

i
R j

R

i
r

j
r
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where the “real space structure constant” is 

 1

1

1

-( )
14 ( 1) ( , , ) ( )lij m l l

L ijLL
L

g ik i i C L L L H  
     R  (2.9) 

1( , , )C L L L  being a Gaunt number (see Appendix A: Notation and Mathematical Preliminaries) and 

2  . 

 

2.4 The scattering path operator 

The T matrix of a system made up of an arbitrary number of scatterers at sites labelled ,i j  is given 

by  

 
,

ij

i j

T   (2.10) 

with 

 0 0
ij i i kj i ik j

ij ij
k i k j

t t G t G t    
 

      (2.11) 

ij was called by Gyorffy the scattering path operator - it sums up the contributions to the total T-

matrix of scattering paths starting from site j  and ending at site. 

On shell elements of ij  are given by 

 
1 1 2 2

1 2,

ij i i in nj
ij LL L LLL LL L L

n i
L L

t t g    


   (2.12) 

(2.12) is the key equation of multiple scattering theory.  Defining matrices (bold-face notation) in site 

and angular momentum, we can write (2.12) as 

 
11 

     t tg t g   

So here is how to calculate the  -matrix; set up a matrix 1 -M t g  and invert it. 

 

2.5 The multiple scattering Green’s function 

The tau matrix provides a convenient expression for the real space Green’s function 

           
,

, n nm m n n
L n LL L m L L LL nm

L L

G Z Z Z X     


    r r r R r R r r  (2.13) 

where   r r   is the greater (smaller) of nr R and n
r R and in which the energy dependence is 

left implicit. 

From this formula for the full Green’s function of the system, any one-electron observable can be 

calculated.  The most important examples are the density of states and the Bloch spectral function. 
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2.6 The Density of states 

Define the local density of states by spatially integrating the r -resolved density of states over a 

specified site i , 

      
1

, Im , ;i

site i site i

n d d G   


 

   r r r r r  (2.14) 

Then (2.13) gives, assuming a spherical scatterer/site: 

        
1

Imi i ii i
l LL l

L

n Q E E Q E 


      (2.15) 

with 

           
22 2, , , ,i i i i i

l l l l l

site i site i

Q E drr Z r E Q E drr Z r E X r E
 

    (2.16) 

This suggests that an angular momentum-resolved local density of states be defined: 

    i i
L

L

n n   (2.17) 

where 

        
1

Imi i ii i
L l LL ln Q E E Q E 


      (2.18) 

 

All this holds for complex energies E i   .  Standard results for the densities of states are 

recovered for 0  .  For 0   the densities of states are “smoothed”. 

 

2.7 The Bloch spectral function 

Multiple scattering theory gives a convenient way of finding the band structure of a periodic crystal 

– the eigenvalue spectrum as a function of the crystal momentum k  - by finding the zeros of the KKR 

determinant.  It also provides a quantity that conveniently represents the band structure but is 

somewhat more general in that it can be calculated for complex energies and used for disordered 

systems.  This is the Bloch spectral function, defined by 

    .
0 0 0

0

1
, Im , ;ni

B n
n cell

A e d G 


   
k Rk r r r R  (2.19) 

The multiple scattering formula for this quantity is found, using (2.13), to be 

      
1

, Im ,B LL LL
LL

A a   


 



  k k  (2.20) 

where 

      0 0 0

0

, ,LL L L

cell

a d Z Z     r r r  (2.21) 
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3 The Single Scatterer 
In this section the problem of a single muffin-tin-type potential is considered.  Various solutions, 

regular and irregular, of the Schrödinger equation are defined, and then the Green’s function is 

obtained.  This result is required in deriving the multiple scattering Green’s function.  

 

3.1 Radial Solutions for the Single Scatterer 
The scattering solutions of the Schrödinger equation 

        0 , ,H v       k kr r r  (3.1) 

where 0H  is the kinetic energy, 0i     and  v r  the scattering potential, are given formally by 

the Lipmann-Schwinger equation 

 
         

       

0

0

, , , ; ,

, , , ;

d G v

d v G

      

    

   

  

    

    





k k k

k k

r r r r r r r

r r r r r r
 (3.2) 

in which   ., ie    k r
k r  , k . 

We can also write a formal solution in terms of the t-matrix: 

 
         

       

0

0

, , , ; , ,

, , , , ;

d d G t

d d t G

      

    

   

  

      

      

 

 

k k k

k k

r r r r r r r r r

r r r r r r r r
 (3.3) 

Given a spherically symmetrical potential, ie    v v rr , the wave functions can obviously be 

decomposed into radial and angular parts, the latter being spherical harmonics.  The solution (3.2) can 

be written in terms of the standard regular radial solution lR  as follows: 

          * ˆˆ, 4 ,li kl
l L L

L

i e R r k Y Y
    k r r k  (3.4) 

where the radial solution has the property of regularity at 0r  and the boundary condition that 

outside the muffin-tin radius 

          , cos sinl l l l lR r k j kr k n kr k    (3.5) 

defining the phase shift l .  Using 

 0( , ) ( ) ( )L L
L

G ik J H

 
   R R R R  (3.6) 

the Lipmann-Schwinger equation can be written in radial form as follows: 

 
             

       

2

0

2

, ,

, ,

l
ri k

l l l l l

l l lr

R r k j kr e ikh kr dxx j kx v x R x k

ikj kr dxx h kx v x R x k r

 




 

 




 (3.7) 

or, in terms of the t-matrix, 
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              1 2 1 1 2 0 2
ˆ, , ,li k

l L L Le R r k Y J d d J t G
   r r r r r r r r r  (3.8) 

Using (3.6) and defining the on-shell matrix element of the t-matrix (diagonal for a spherical scatterer) 

by 

( ) ( ) ( )l L Lt d d J t J    r r r r,r r  

it can be seen that when r  lies outside the scatterer (ie r  the muffin-tin radius) 

     ,li
l l l le R r k j kr ikt h kr    

which implies, in view of (3.5), that 

      1
sin li k

l lt k k e
k


   (3.9) 

In addition to the regular solution lR , two more irregular solutions need to be defined: 

           2
1 1 1 10

, ,l l l l lR r k h kr ik dr r j kr h kr v r R r k


   

     

where  r r 
is the greater (smaller) of r  and 1r , together with the condition 

     2

0
, 0l ldrr h kr v r R r k


    

 ,lR r k  matches on to  lh kr at the muffin-tin radius. 

There is a useful relation between the regular and irregular solutions: 

           1
, , ,

2
l li k i k

l l lR r k e R r k e R r k     (3.10) 

Finally, Faulkner and Stocks introduced the alternative radial solutions  lz kr and  lx kr  defined as 

indicated in the following table: 

Function Type2 Behaviour at r=0 Boundary Condition at r=muffin-tin radius 

 ,lR r k  real regular        cos sinl l l lj kr k n kr k    

      ( )li k

l l le j kr ikt k h kr    

 ,lR r k  complex irregular  lh kr  

 lz kr  real regular    1
l l lj kr t ikh kr    

 
 ,

sin
l

l

k
R r k

k
   

 lx kr  real irregular  lj kr  

                                                           
2 These properties hold for real energies - for complex energies all the radial solutions are complex. 
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Note that lz is proportional to lR .  In fact 

        , ,li k

l l le R r k t k z r k
  (3.11) 

from which integral equations for lz can be obtained using (3.7) or (3.8).  These new functions give 

neater forms for the multiple scattering Green’s function. 

 

3.2 The Green’s Function 

The standard derivation of the single scatterer Green’s function uses the eigenfunction expansion 

  
 

   
3 2

, ,
, ;

2

d
G

k i

   


 






 
 

k kr rk
r r  (3.12) 

into which the expression (3.4) can be inserted to give 

      
   2

2

, ,1
ˆ ˆ, ; l l

L L
L

R r k R r k
G Y Y dkk

k i


  


 




 

 
 r r r r  (3.13) 

Here   is a small positive number whose limit 0   will be taken, and the range of the k  integral 

has been extended from 0 k   to k     because the integrand is an even function of k .  

(3.13) can be worked out as a contour integral, but some careful manipulation is necessary.  First, 

define  

2

i
 


   ,    

such that, to first order in  ,  

 
2

i      

The integrand in (3.13) thus contains the factor 

2

2 2

1

2

1 2

2

k k k

k k k

k k k

k k k

  

  

  

  

 
   

   

  
     

    

 

The term in round brackets is odd in k and therefore does not contribute to the integral.  Thus  

         
1

ˆ ˆ, ; , ,L L l l
L

k
G Y Y dk R r k R r k

k


 


 




  


 r r r r  

Thus, the integrand has a pole at k  in the upper half-plane.  Now suppose that r r  , and use 

(3.10) to replace  ,lR r k  by the corresponding irregular solutions, giving two terms involving lR and 

lR respectively.  Because lR  behaves like lh , we close the contour for the first term in the upper half-

plane -  ,lR r k   must kill any contribution from  ,lR r k  since r r  .  For similar reasons we close the 
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contour for the second term in the lower half-plane.  Thus, the second term does not contribute and 

working out the residue at k   for the first term gives 

            ˆ ˆ, ; , , li k

L L l l
L

G ik Y Y R r k R r k e 
   

 
   r r r r  (3.14) 

where now  r r 
 is the greater (smaller) of r  and r  and k  . 

Equation (3.14) is the key result.  For future use, it is helpful to write it in terms of the Faulkner 

solutions defined above: 

          , ; , ( ) , , ,L l L L L
L

G Z k t k Z k Z k X k 

 
     r r r r r r  (3.15) 

Remember, the bar symbols on the Z  functions in (3.15) indicate that the implied spherical harmonic 

is complex-conjugated.  Note that the reality of the radial solutions implies that the irregular (ie 

second) term does not contribute to the imaginary part of the Green’s function (for real energies).  

Finally, note that (3.15) (and previous equations) assumes that the origin of coordinates is at the 

centre of the spherical scatterer.  If r  and r  are measured from an arbitrary origin with respect to 

which the centre of the scatterer is located at R  then (3.15) reads 

          , ; , ( ) , , ,L l L L L
L

G Z k t k Z k Z k X k 

 
       r r r R r R r r  (3.16) 

where now   r r  is the greater (smaller) of r R  and r R . 
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4 The Free Space Green’s Function 
The objective here is to derive the following expression for the free space Green’s function 

     0 ,
,

+ , ij
i j L L L L

L L

G J g J 



  r R r R r r  

in terms of the structure constant matrix ,
ij
L Lg    The relevant geometry is as follows: 

 

Figure 1: The definitions of position vectors multiple scattering calculations 

First note the translational invariance properties of the free space Green’s function 0G : 

 0

1
( , ) , =

4

ike
G k 





  


R-R

R R
R R

 (4.1) 

Hence 

 0 0

1
( , ) ( , )

4

ike
G G





     
 

r+R-r

r R r r r R
r R r

 (4.2) 

Now use the angular momentum resolution of 0G : 

 0( , ) ( ) ( ) ( ) ( )L L L L
L L

G ik J H ik J H 

   
     R R R R R R  (4.3) 

with 
  

R being the smaller (greater) of R  and R .  The second equality follows from the fact that 

(4.3) contains 

2 1
ˆ ˆ ˆ ˆ( ) ( ) (cos ) ( ) ( )

4
L L l L L

m m

l
Y Y P Y Y



 
   r r r r  

using the spherical harmonic addition theorem.  Thus (4.3)  implies that 

0 0( , ) ( , )G G R R R R  

  

Site i 

Origin 

Site j 

i
R j

R

i i
r r R

j j
r r R

r r

ij i j
R R R
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which is guaranteed by (4.1). 

Because of (4.2) we can write 

0 0( , ) ( , )i j ij

ij i j

G G    

 

r R r R r r R

R R R
 

Since, by hypothesis, r  lies within site i , r lies within site j  and sites i  and j  do not overlap, we 

must have 

ij
 r r R  

Hence 

 0( , ) - ( ) ( )i j L L ij
L

G ik J H    r R r R r r R  (4.4) 

Now use the Multiple Scatterer’s Friend, (see Lloyd and Smith [1]) 

     ( )   L ij LL ij L ij
L

ikH g J for R r

 



     r R R r  (4.5) 

where (see (A25) in Appendix A: Notation and Mathematical Preliminaries) 

   1

1

1

-( )
14 ( 1) ( , , ) ( )LL ij

lm l l
L ij

L

g ik i i C L L L H

     R R  (4.6) 

in which the Gaunt number 

 
1 2 31 2 3

ˆ ˆ ˆ ˆ( , , ) ( ) ( ) ( )L L LC L L L drY Y Y  r r r  (4.7) 

has been used.  Hence from (4.4) and (4.5) we get 

        0
,

+ ,i j L LL ij L
L L

G J g J 



  r R r R r R r  (4.8) 

which is the desired result.  Equation (4.6) defines the real space structure constants which appear 

everywhere in multiple scattering theory. 
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5 The Real Space Structure Constants 
In the previous section, the following formula for the real space structure constants occurred: 

 1

1

1

-( )
14 ( 1) ( , , ) ( )lij m l l

LL L ij
L

g ik i i C L L L H
 


    R  (5.1) 

Here we have decided, for convenience later, to write the structure constant as a matrix with site 

indices rather than a function of the vector between the sites: 

    ij
LL LL ij LL i jg g g    R R R  (5.2) 

 

5.1 Symmetries 
This matrix has various symmetries. Consider first interchanging angular momentum indices: 

 1

1

1

-( )
14 ( 1) ( , , ) ( )lij m l l

L L L ij
L

g ik i i C L L L H
  


    R  (5.3) 

Now recall a property of the Gaunt numbers (see Appendix A: Notation and Mathematical 

Preliminaries): 

1 2 3 2 1 3( , , ) ( , , )C L L L C L L L  

Hence we can write (5.3) as 

 1

1

1

-( )
14 ( 1) ( , , ) ( )lij m l l

L L L ij
L

g ik i i C L L L H
  


    R  (5.4) 

Thus, comparing with (5.1), we have 

 ( )( 1)ij l l m m ij
L L LLg g   

    (5.5) 

Now consider interchanging site indices: 

1

1

1

-( )
14 ( 1) ( , , ) (- )lji m l l

LL L ij
L

g ik i i C L L L H
 


    R  

The inversion property of the spherical harmonics (see (A6)) gives 

1 1

1

1

-( )
14 ( 1) ( 1) ( , , ) ( )l lji m l l

LL L ij
L

g ik i i C L L L H
 


    R  

which, using the parity property of the Gaunt numbers (see (A19)), becomes  

1

1

1

-( )
14 ( 1) ( 1) ( , , ) ( )lji m l l l l

LL L ij
L

g ik i i C L L L H
   


     R  

Hence, comparing with (5.1),  

 ( 1)ji l l ij
LL LLg g

    (5.6) 

Finally, combining (5.5) and (5.6) gives 

 ( )(-1)ij m m ji
LL L Lg g

   (5.7) 
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These symmetries also hold for the other structure constant defined in Appendix A: see (A26) 

 

   

   

   

( )

( )

( 1)

( 1)

(-1)

l l m m
L L LL

l l
LL LL

m m
LL L L

d d

d d

d d

   

 



 



 

 

  

 

R R

R R

R R

 (5.8) 

For these quantities complex conjugation is straightforward (because the spherical Bessel functions 

are real) and we can easily obtain 

        1
l l

LL L L L Ld d d
 

            R R R  (5.9) 

 

5.2 Other people’s structure constants 

These notes work with formulae given by Lloyd and Smith (L&S) [1].  In fact, L&S use a form of the 

multiple scatterer’s friend containing a structure constant ( )L L ji  R , which is related to the structure 

constant used here by 

( )ij l l
LL L L jig i 

  R  

Pendry [4] (p272) quotes a version of the multiple scatterer’s friend involving a structure constant 

( )LL jiE  R  which is related to mine by 

( )ij
LL LLg ikE  jiR  

Pendry’s formula is 

1 1

1

1

1( ) 4 ( 1) ( , , ) ( )l l l m m
LL ji L ji

L

E i C L L L H
    


 R R  

By repeated using the properties of spherical harmonics and Gaunt numbers it is easy to show that 

this agrees with my formula (5.1).  

It is difficult to establish consistency with Faulkner et al [5], [10] because they tend to use real 

spherical harmonics. I think the formula given in Weinberger’s book [6] is wrong, presumably a typo. 

 

5.3 The norm of the structure constants 

Define a norm matrix P by 

 
2

=ij ij
ll LL

mm

P g 



  (5.10) 

Using (5.1) we get 

1 2

1 2

1 2

2 2 +
1 2( ) (4 ) ( ) ( ) ( , , ) ( , , )l lij

ll L ij L ij
L L mm

P k i H H C L L L C L L L   





   R R  

But expressing the Gaunt numbers in terms of 3J symbols and using the orthogonality of the 3Js, we 

get 
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1 2 1 2

2

1

1 2

(2 1)(2 1)
( , , ) ( , , )

00 04
l l m m

mm

l l ll l
C L L L C L L L  



   
    

 
  (5.11) 

Thus 

1

1

2
2 12 2( ) 4 (2 1)(2 1) ( )

00 0
ij

ll L ij
L

l l l
P k l l H 



 
    

 
 R  

Now note that in the summation 1m  appears only in the (implicit) spherical harmonics, and therefore 

we can use the sum rule 

 
1

1

2
12 1ˆ
4

L
m

l
Y




 R  

to obtain 

  
1

1

2
2 12 2 +

1( ) (2 1)(2 1) ( ) 2 1
00 0

ij
ll l ij

l

l l l
P k l l h R l

 
     

 
  (5.12) 

This is the basic expression for the norm of the structure constants.  Note that it depends only on the 

magnitude of ijR , not its direction. 

 

5.4 Asymptotic behaviour 

Here we give some formulae relating to the behaviour of the structure constants for large distances 

and energies (see [8]).  This can be done by noting the asymptotic form for the Hankel functions: 

 ( 1)lim ( )
ikr

l
r l

e
h kr i

kr


  

   (5.13) 

 

Using this in (5.1) gives 

  ˆlim
ij

ij

ikR
ij

kR LL LL ij

ij

e
g D

R
   R  (5.14) 

where 

  
1

1

-( )
1

ˆ ˆ4 ( 1) ( , , ) ( )m l l
LL ij L ij

L

D i C L L L Y 


   R R  (5.15) 

in deriving which the parity rule for the Gaunt number has been used.  This shows that asymptotically 

the dependence of the structure constants on energy and distance is entirely contained in the wave-

like first factor in (5.14), with the coefficient LLD   being a complex number of order 1 which depends 

only on the direction of ijR . 

We can also give a nice asymptotic expression for the norm of the structure constants.  Use (5.13) in 

(5.12) to obtain  
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 
1

2

12
12

1
lim ( ) (2 1)(2 1) 2 1

00 0ij

ij
kR ll

lij

l l l
P l l l

R


 
     

 
  

But, by the orthogonality property (A14) of the 3J symbols, 

  
1

2

1

12 1 1
00 0l

l l l
l

 
  

 
  (5.16) 

And therefore 

 
1

lim (2 1)(2 1)
ij

ij
kR LL

ij

P l l
R


    (5.17) 
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6 The Scattering Path Operator 
The objective here is to define and give the important operator identity for the scattering path 

operator  .  We start by writing the total potential as a sum of contributions from each scatterer at 

site i , position iR : 

 i

i

( ) ( )V v  ir r R  (6.1) 

Later, in considering the on-shell matrix elements of  , it will turn out that the site potentials iv

must be non-overlapping.  From now on, in this section we will drop the explicit dependence on 

spatial variables - it’s irrelevant here. 

The Green’s function corresponding to the potential V  is given by the Dyson equation 

 0 0 0 0G G G VG G GVG     (6.2) 

where 0G  is the free space propagator.  This equation has the formal solution  

 0 0 0G G G TG   (6.3) 

in which T  is the total scattering operator or T matrix3, given by 

 0 0T V VG T V TG V     (6.4) 

We can define the single-site t matrix it  in the same way: 

 
1

0 0

1
0 0

(1 )

(1 )

i i i i i i

i i i i i

t v v G t v G v

v t G v v G v





   

   
 (6.5) 

Clearly the total T matrix can be written 

0
i i

i i

T v v G T    

Now introduce operator iQ describing the total scattering from site i : 

 i

i

T Q  (6.6) 

Thus 

0
,

i i i n

i i i n

Q v v G Q     

and 

 

0

0 0

0

i i i n

n

i i i i n

n i

i i n

n i

Q v v G Q

v v G Q v G Q

t t G Q





 

  

 







 (6.7) 

                                                           
3 We should say T operator here, but everyone says T matrix (and S matrix, R matrix etc) in scattering theory.  
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This eliminates the potentials iv  in favour of the single-site scattering matrix it .  Now write 

 i ij

j

Q   (6.8) 

whence 

 
,

ij

i j

T   (6.9) 

and 

 

0

0

ij i i kj
ij

k i

i ik j
ij

k j

t t G

t G t

  

 





 

 




 (6.10) 

Note that in a term such as 0
i kt G t  the propagator links sites i  and k , and can thus be thought of as 

a matrix 0
ikG  (actually a matrix-operator like ij ) – see section 7.  If we make this explicit in (6.10) we 

get 

 
 

0

0 1

ik

ik

ij i i kj
ij

k i

i i ik kj
ij

k

t t G

t t G 

  

 





 

 




  

Introducing a modified propagator matrix with the diagonal elements set to zero, 

  0 0 1ik ik
ikG G     (6.11) 

we obtain 

 0
ikij i i kj

ij
k

t t G      (6.12) 

The point is that in any term of (6.10) or, equivalently, (6.12), adjacent scatterings on the same site 

are excluded. 

ij  was called by Gyorffy the scattering path operator - it sums up the contributions to the total T 

matrix of scattering paths starting from site j  and ending at site i , as can be seen by iterating (6.12): 

 0 0 0 ...ij i i ij j i in n nj j
ij

n

t t G t t G t G t      (6.13) 
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7 On-Shell Elements of the Tau Matrix 
Define the on-shell matrix elements of ij and it  as follows: 

 
d d ( ) ( , ) ( )

d d ( ) ( , ) ( )

ij ij
LL L i L j

i i
LL L i L i

J J

t J t J

  

 

    

    

 

 

r r r R r r r R

r r r R r r r R
 (7.1) 

involving Bessel functions centred at sites i  and j .  For spherical single scatterer potentials, i
LLt   is 

diagonal in angular momentum.  The explicit formula for the on-shell elements of it in terms of the 

phase shifts of the potential at site i  was given in section 3.1, equation (3.9).  For non-spherical 

single scatterer potentials, the t matrix will not be diagonal but can nevertheless be calculated by 

more complicated methods into which we won’t go here.  The on-shell elements of it  can therefore 

be regarded as known input quantities here.   

The integrals in (7.1) are confined to run over sites i  and j  by the spatial property of the τ matrix, 

namely 

( ) 0ij  r,r , unless r  lies in site i  and r  lies in site j .  Likewise    

( ) 0it  r,r , unless r  lies in site i . 

Changing the integration variables, we get 

 d d ( ) ( , ) ( )ij ij
LL L i j LJ J  

     r r r r R r R r  (7.2) 

Putting the defining operator equation into real space gives 

1 2 1 0 1 2 2
n i

( ) ( ) + d d ( ) ( ) ( )ij i i nj
i j i j ij i jt t G  



         r R ,r R r R ,r R r r r R ,r r ,r r ,r R  

where the 1r  integral runs over site i  and the 2r  integral runs over site n .  Changing the origin of 

these integration variables gives   

1 2 1 0 1 2 2

( ) ( )

+ d d ( ) ( ) ( )

ij i
i j i j ij

i nj
i i i n n j

n i

t

t G

 




     

      

r R ,r R r R ,r R

r r r R ,r R r R ,r R r R ,r R
 

Since n  cannot be the same site as i  and 1 2,r r are confined to be within a site, we are entitled to 

use  

     0 1 2 L 1 , L 2
L,L

in
i n L LG J g J 



  r R ,r R r r  

Using the last two equations in (7.2) clearly gives 

 
1 1 2 2

1 2,

+ij
LL

i i in nj
ij LL L LLL L L

n i
L L

t t g    


   (7.3) 

Equation (7.3) is the key equation of multiple scattering theory.  Defining underlined matrices in 

site and angular momentum: 
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 

 

  (1- )

ij ij
LLLL

ij i
LL ijLL

ij ij
ij LLLL

t

g



















t

g



 (7.4) 

we can write (6.12) as 

11 


 

   

t tg

t g

 
 

 

Here, then, is how to calculate the scattering path matrix, ie the matrix of the on-shell elements of 

the scattering path operator:  set up a matrix M  

 -1 -M t g  (7.5) 

and invert it.  This is the heart of all multiple scattering calculations.  Once one has the scattering 

path matrix, one can calculate the full 1-electron Green’s function of the system (see section 11) and 

hence any 1-electron observable. 
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8  The Scattering Amplitude of a Cluster 
Most applications of multiple scattering theory to condensed matter have to do with the eigenvalue 

spectrum or spectral density, leading through into spectroscopic and transport properties.  Some of 

these are developed in the following sections.  In this section, however, we calculate a quantity 

central to the scattering process itself, namely the scattering amplitude of a cluster of atoms or 

scatterers.  This is relevant for LEED and related experiments. 

Consider a plane wave incident on a cluster, by which we mean anything from a single atom to a 

crystal.  The scattering amplitude of any such object is defined by the asymptotic form of the wave 

function at distances large compared with the size of the cluster and therefore far away from any 

scattering potential.  In general this asymptotic form is 

      lim , ,
ikr

i scat i

r

e
e e f

r
    


   k.r k.r

k kr r k  (8.1) 

Here 20 0i k i        

To determine the scattering amplitude  f k  we will use the geometry depicted in Figure 1 and write 

the total wave function = incident wave plus scattered wave by means of the Lipmann-Schwinger 

equation  (cf equation (3.3)): 

 
     

   

0

0

, , ; ,

, ; ,

i i

i ij i
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e d d G T e

e d d G e

  

 

 



     

     

 

 

k.r k.r
k

k.r k.r

r r r r r r r

r r r r r r
 (8.2) 

in which the second line uses (6.9).  In this equation the integrals over r  and r are confined to sites 

i  and j  respectively – see the argument in section 7.  This means we can change variables according 

to the geometry of Figure 1 and write  

        
0, , ; , j jiscat ij

i j i i i i j jsite i site j
ij

d d G e   
         

k. r R

k r r r r r R r R r R  (8.3) 

Now, we are after the asymptotic case in which i i
 r r R , and so we can use (4.3) to write 

 0( , ; ) ( ) ( ) ( ) ( )i i L L i i L L i i
L L

G ik H J ik H J            r r R r r R r r R  (8.4) 

If we now also use the asymptotic form of the Hankel functions (see Appendix B:): 

  
  

 
1 /2

1lim
i x l ix

l

l
x

e e
h x i

x x

 

 


   (8.5) 

we can easily see that the scattered wave has the asymptotic form required by (8.1) with the 

scattering amplitude given by 

        ˆ ( ) , j jil ij
L i j L i i i i j jsite i site j

ij L

f i Y d d J e
            

k. r R
k r r r r R r R r R  (8.6) 

Now if we use the angular momentum resolution of the plane wave: 

            ˆ ˆˆ ˆ4 4i l l
l L L l L L

L L

e i j kr Y Y i j kr Y Y    k.r r k r k  (8.7) 
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we can write  

 

       

 

ˆˆ4

( ) , ( )

l l

L L
ij LL

ij
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d d J J
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


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  

        



 

k r k

r r r R r R r R r R
 (8.8) 

Now we use one of the multiple scatterer’s friends (Appendix A:) to expand the Bessel functions in 

terms of Bessel functions centred on a different origin: 

 

 

  
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( ) ( )

L LL L
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J d J

J d J

 





 




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



r -R R r

r -R R r
 (8.9) 

where the structure constants are given by (A26).  This change of origin allows us to recognise the 

on-shell matrix element of ij  defined in (7.2) and write 
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 


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 (8.10) 

where we have used (5.9). 

 

The single scatterer result  SSf k  is obtained by letting  
1 2 1 1 2

ij
L L L L L ijt    , 0i R   and noting that 

 
0

lim LL LL
R

d  


R  - this is easily obtained from (A26).  Thus, we easily find the familiar result (see, for 

example, Schiff [2])  
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9 Energy eigenstates 
In a typical electronic structure calculation, the goal is to find the energy eigenvalues: the energies of 

molecular or cluster orbitals, the energy bands in a periodic crystal, etc.  Multiple scattering gives 

access to these quantities by noting that the resolvent, the Green’s function and therefore the T 

matrix has poles at the required energies.  Thus, we can determine the eigenvalues of the 

Hamiltonian by locating the poles of the T matrix. 

 

9.1 Lattice Fourier transforms for periodic crystals 

Consider a periodic crystal with one atom per unit cell – the generalisation to more complicated 

crystal lattices is trivial.  For such a system the single site t matrix is the same for all sites ( it t i  ) 

and the position vectors iR fall on a regular lattice.  This allows us to define the lattice Fourier 

transforms of the real space matrices (7.4)  defined in section 7.   
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 

  
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



   

   





k. R R

k

k. R R

k

g k

k

 (9.1) 

where the sum runs over all the allowed crystal momentum vectors k in the Brillouin zone (BZ).  It’s 

then straightforward to show that the lattice Fourier transform of the key multiple scattering 

equation (7.3) is 

      
1 1 2 2

1 2

, , ,LL LL LL L L L L
L L

t t g       k k k  (9.2) 

Lattice periodicity means that this equation is “diagonal” in k .  Defining k -dependent matrices in 

angular momentum by 

 
   

   

, ,

, ,

LLLL

LLLL

g 

  





   

   

g k k

k k
 (9.3) 

we can write (9.2) as follows: 

      
11

, ,  


  
 

k t g k  (9.4) 

 

9.2 The KKR method 

In view of the introductory remarks in this section, it’s now easy to see how to find the energy bands 

of a periodic crystal by multiple scattering theory.  For each “quantum number” k  one evaluates the 

KKR matrix as a function of energy: 

      
1

, ,  


 M k t g k  (9.5) 

The poles of the T matrix of the crystal are then located by finding the energies   k  at which the 

KKR determinant is zero: 
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   det , 0 M k k  (9.6) 

In general there’s more than one zero for each k  - hence the need for the band index  . 

That, in a nutshell, is the Korringa-Kohn-Rostoker (KKR) method of band theory.  In real calculations, 

the big computational task is evaluating the Lattice Fourier transform  ,g k of the structure 

constants.  This is the inverse of (9.1) and thus involves a sum over real space lattice vectors iR .  

There is a whole technology – Ewald methods, fitting procedures etc – to make this convergent and 

efficient; we don’t go into that here.  Also there are other tricks of the trade.  What’s described 

above is called a constant k search.  One could also fix the energy and look for zeroes as a function 

of k - this is called a constant  search and is good for mapping the Fermi surface. 
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10 The Lloyd formula 
The Lloyd formula was of central importance to the development of the multiple scattering 

description of electrons in condensed matter and is still used in actual calculations.  It relates the 

density of electron states  n  of a system consisting of set of scatterers (atoms) – ie a molecule, a 

cluster, an infinite ordered or disordered crystal, etc – to the density of states  0n  of a free 

electron system – ie the same system with all the scattering potentials removed.  The formula reads 

      0

1
Imlog(det )

d
n n

d
  

 
   M  (10.1) 

where   1 - M t g  is the matrix introduced in (7.5).  The quantity  det M  is often called the 

Lloyd determinant.  Clearly one could also write this in terms of the integrated density of states 

   N d n


     , ie the number of electron states below energy  : 

      0

1
Imlog(det )N N  


   M  (10.2) 

This is the form in which the Lloyd formula is often used.  It gives a convenient way to find the Fermi 

energy F , the energy for which  FN N  where N is the total number of electrons in the system 

per unit volume.  The way this works is that every time the energy passes through an eigenvalue of 

the Hamiltonian the Lloyd determinant passes through zero (and the T matrix has a pole) and the 

phase of the determinant jumps by  , whereupon the right hand side of (10.2) jumps by one.  Thus, 

the eigenvalues are counted one by one as the energy parameter increases and passes through 

them.  

The Lloyd formula is the multiple scattering generalisation of Friedel’s formula for a single (spherical) 

scatterer: 

      
 

0

1
2 1 l

l

d
n n l

d

 
 

 
    (10.3) 

where l  is the l wave  phase shift for the single scattering potential (see section 3.1). 

 

10.1  Krein’s theorem 

The theorem (see [5], [7]) is 

    
 

 
0 2

E
Tr G z G z dE

E z




    


  (10.4) 

where the resolvents are the following functions of the complex variable z : 

        
1 1

0 ,G z z K G z z H
 

     (10.5) 

in which K is the kinetic energy operator and H is the full Hamiltonian of the system.   E is called 

the spectral displacement function.  Equation (10.4) is a special case of a more general theorem 

stating that for any sufficiently smooth function   



27 

 

     
 d E

Tr H K dE E
dE







       

It can be shown that for the scattering potentials we encounter the spectral displacement operator 

is given in terms of the S matrix (recall that 1 2S i T  ): 
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 (10.6) 

Now, considered as a function of a complex variable,  z is analytical everywhere except the 

negative real axis, where it has poles corresponding to bound states of H , and the positive real axis, 

where there is a branch cut corresponding to the continuum states.  It also approaches zero for 

z  , and has the reflection property     x i x i   


   as 0 .  From the theory of 

functions of a complex variable, then,  z  satisfies 
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
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Using this with (10.4) gives 
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where we use the notation    
1

0
limG H i


  





   .   

Now for a single spherical scatterer the S matrix elements are given in terms of the phase shifts by 

   2 li

LL LLS e  
    (cf equation (3.9)) and the density of states is related to the resolvent by 

        1

0

1 1
lim Im Imi

i

n Tr H i TrG


      
 

 


         (10.8) 

A very brief calculation then yields Friedel’s formula (10.3).   

For a cluster of scatterers, it’s convenient to write the spectral displacement operator in terms of the 

on-shell elements of T matrix of the cluster as follows4: 

    
1

Imlog detT  


      (10.9) 

But the required matrix elements are given by (7.4) if we recall that the matrices defined in section 7 

have a composite index running over sites and angular momenta.  In this way, the Lloyd formula 

itself (10.1) is quickly obtained. 

 

                                                           
4 It takes a certain amount of manipulation to obtain this from the S matrix formula (10.6).  It helps to proceed 
via the Wigner reaction matrix, which is Hermitian.  See [7]. 



28 

 

11  The Green’s Function 
This section derives the important formula for the multiple scattering Green’s function in terms of 

the real space τ matrix.  I follow the derivation given by Faulkner and Stocks9. This is a long and 

complicated derivation, but it is fully convincing.  A briefer treatment is sketched in Peter Jewsbury’s 

PhD thesis, but I suspect that if this were written out in full it would be rather long too.  Still, it’s odd 

that such an elegant and simple result needs such a lengthy derivation... 

We start from the operator equations relating G  to  : 

 0 0 0G G G TG   (11.1) 

 
,

ij

i j

T   (11.2) 

 0
ij i i kj

ij
k i

t t G  


   (11.3) 

The Faulkner/Stocks treatment considers two cases. 

 

11.1  Case 1: r and r lie near site n   

We begin by obtaining an operator relation between G  and the single scatterer Green’s function nG .  

From (11.1), (11.2) and (11.3) 
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Thus, noting that the single-scatterer Green’s function is 

 0 0 0
n nG G G t G   (11.4) 

we get 
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Now introduce nmT : 

 
,

nn ij
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 

   (11.5) 

so that 



29 

 

 

0 0 0

0 0 0

0 0 0

n n nn n n ij n
in

i n j n

n n nn n nn n

n n nn n

G G G T G G t G t G

G G T G G T G t G

G G T G G t G

 
 

 
    

 

  

  

 

 

Hence 

 n n nn nG G G T G   (11.6) 

The next step is to put this equation into real space: 

          1 2 1 1 2 2
,

, , , , ,n n ij n
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G G d d G G
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      r r r r r r r r r r r r  (11.7) 

For the single scatterer Green’s function we can use the formula derived in section 3.2, namely 

          ,n n n n n n
L n l L n L L

L

G Z t Z Z X 
      r r r R r R r r  (11.8) 

where  r r 
is the greater (smaller) of nr R  and n

 r R , and in which the energy dependence is left 

implicit.  Inside the integrals, 1r  runs only over site i  and 2r  runs only over site j , because the -

matrix is zero otherwise.  Thus 1r  and 2r  lie outside site n , and we can use the following expression 

for the single scatterer Green’s function, which follows from (11.8) by using the forms to which the 

radial functions Z and J match at the muffin-tin radius: 

      1 1,n n n
L n l L n

L

G ik Z t H   r r r R r R  (11.9) 

Now expand the Hankel function about site i using the Multiple Scatterer’s Friend ( see Appendix A: 

Notation and Mathematical Preliminaries) 
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The same reasoning leads to 
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So, if we recall that the definition of the on-shell matrix elements of the -matrix (section 7) is 
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we see that (11.7), (11.10) and (11.11) give 
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G G Z t g g t Z   

  

 
      

 
  r r r r r R r R  (11.12) 
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The final step is to do some manipulations on the -matrix equation (here we are really using the 

equation for the on-shell matrix elements, but we’ll suppress the angular momentum indices for 

simplicity): 

nn n n ni in

i n

t t g 


   

with 

in ij jn n

j n

g t if i n 


   

Thus 

 
,

nn n n ni ij jn n

i n j n

t t g g t 
 

    (11.13) 

and 

        
,

, ,n n nn n n
L n LL l LL L n

L L

G G Z t Z   



      r r r r r R r R  

and comparison with (11.8) immediately gives 

           
,

, n nn n n n
L n LL L n L L LL

L L

G Z Z Z X    


    r r r R r R r r  (11.14) 

 

11.2  Case 2: r lies near site n and r lies near site m 

As with case 1, we begin by deriving an operator relationship between G and single scatterer Green’s 

functions nG  and mG .  Proceeding as before, we get 

0
,

0 0
,

n n ij

i n j

n n im n ij

i n i n j m

G G G G

G G G G G



 



  

 

  



 
 

Now define 

 
,

nm ij

i n j m

T 
 

   (11.15) 

and write 

 

0 0 0

0 0 0 0

0

n n m ij m n nm
im

i n j m

n n m n nm m
im

i n

n n m n nm m
im

i n

G G G t G t G G T G

G G t G G T G t G G

G G t G G T G

 





 





 
    

 

   

  

 





 

If m n , the second term is zero and we recover (11.6).  If m n , then the second term counts and 
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  
0

0 0 0 01

n n m n nm m

n m n nm m

G G G t G G T G

G G t G t G G T G

  

   
 

Thus, defining 

    0 0 01 1nm n mG G t G t G    (11.16) 

we get  

 nm n nm mG G G T G iff m n    (11.17) 

We now put this into real space and express the result in terms of the on-shell matrix elements of 

the τ matrix.  This time we take the origin for r  to be site n  and that for r to be site m .  Then, 

working through just as in case 1, we get 

         
,

, ,nm n nm n nm m m
L n LL l LL l L m

L L

G G Z t g t Z    



      r r r r r R r R  (11.18) 

Now consider nmG  in real space: 

1 2 1 1 2 0 2( , ) ( , ) ( , ) ( , ) ( , )nm n n mG G d d G t G     r r r r r r r r r r r r  

By hypothesis, r  lies in site n  and r  lies in site m .  Moreover, the t matrix confines 1r  and 2r to site 

m .  Thus, as above, we can use 

     

   
,

,n n n
L n l L n

L

n n nm
L n l LL L m

L L

G ik Z t H

Z t g J



 



    

  





r r r R r R

r R r R
 

and 

   1 1
,

( , )n n n nm
L n l LL L m

L L

G Z t g J


  r r r R r R  

Thus 

      1 2 1 1 2 0 2
,

( , ) ( , ) ( , )nm n n nm m
L n l LL L m L m

L L

G Z t g J d d J t G  



        r r r R r R r r r R r r r r  

and the quantity in brackets can be recognised as the Lipmann-Schwinger equation for 

 m m
l L mt Z 

r R .  Hence  

    
,

( , )nm n n nm m m
L n l LL l L m

L L

G Z t g t Z  



   r r r R r R  (11.19) 

Comparing (11.19) with (11.18) we immediately find 

      
,

, n nm m
L n LL L m

L L

G Z Z  



   r r r R r R  (11.20) 
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11.3  Summary 
From (11.14) and (11.20) we see that, taking both cases together, 

           
,

, n nm m n n
L n LL L m L L LL nm

L L

G Z Z Z X     


    r r r R r R r r  (11.21) 

which is the desired result (cf (2.13). 

(11.21) is clearly valid when r  and r  lie in sites n  and m  respectively.  Faulkner and Stocks [10] 

claim that this derivation shows it to be valid when r  and r lie in no site other than n  and m  

respectively. 
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12  The Local Density of States 
Start with the fully r -resolved density of states (the diagonal part of the density matrix) 

      
2

, n n
n

      r r  (12.1) 

But  

  
   

 

*

0
, , lim n n

n n

G
i

 


  






 

 


r r
r r  (12.2) 

so that 

    
1

, Im , ,G  


 r r r  (12.3) 

We can use the multiple scattering formula for the Green’s function to evaluate this expression, but 

first we develop the idea that it may be useful to do this for complex energies.  The clear analytical 

properties of all scattering quantities are among the many formal attractions of this theory, and 

have practical benefits too.  For example, suppose we want to “smooth out” the energy-dependence 

of the density matrix by folding it with a Lorentzian of width : 

 

   
 

   
 

 
 

2 2

2

2 2

2

2 2

/
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/

/

n n
n

n
n n

d

d

 
    

  

 
    

  

 


  

 
 

  
 


 







r r

r

r

 (12.4) 

  

But from (12.2) we can write 

 
   

 

*

, , n n

n n

G i
i

 
 

  


  

 


r r
r r  

and  

 
 

 

2

2 2
Im , ,

n

n n

G i
 

 
  

  
 


r

r r  

Hence 

    
1

, Im , ,G i   


  r r r  (12.5) 

Now make use of the multiple scattering Green’s function, with the shorthand E i   : 

             
,

, , , , , ,i ij j i i
L i LL L j L L LL ij

L L

G E Z E E Z E Z E X E     


    r r r R r R r r  (12.6) 
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Defining the local density of states by spatially integrating the density matrix over a specified site i , 

    ,i

site i

n d  


  r r  (12.7) 

we can use (12.5) to obtain 

            
,

1
Im , , , ,i i ii i i i

L LL L L L LL
L Lsite i

n d Z E E Z E Z E X E  


  



 
   

 
 r r r r r  

Assuming a spherical scatterer/site, the angular integral involving the implied spherical harmonics 

gives LL  , so that 

           

     

221
Im , , ,

1
Im

i i ii i i
l LL l l

Lsite i

i ii i
l LL l

L

n drr z r E E z r E x r E

Q E E Q E

 







 
   

 

    





 

This suggests that an L-resolved local density of states be defined: 

    i i
L

L

n n   (12.8) 

where 

        
1

Imi i ii i
L l LL ln Q E E Q E 


      (12.9) 

with 

     
22 ,i i

l l

site i

Q E drr z r E


   (12.10) 

and 

      2 , ,i i i
l l l

site i

Q E drr z r E x r E


   (12.11) 

For completeness, note that (12.9) is the L-resolved local density of states.  The l-resolved LDOS is 

given by 

 

   

       
1

Im 2 1

i i
l L

m

i ii i
l LL l

m

n n

Q E E l Q E

 






 
    

 




 (12.12) 

All this is for complex energies E i   , and all densities of states are “smoothed” in the sense 

defined above.  The radial functions z  and x  are thus complex and all terms in (12.12) contribute.  

In numerical calculations (12.12) gives positive values for the LDOS, as the definition (12.4) demands.  

The standard formulae for the unsmoothed LDOS are immediately obtained by setting =0, when E 

becomes real as do the radial functions z  and x , and the imaginary part of the irregular term given 

by (12.11) vanishes. 
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13  The Bloch Spectral Function 
Consider a periodic crystal lattice.  For such a system, the energy eigenvalues, as a function of crystal 

momentum k , are the energy bands of conventional electronic structure theory.  The Bloch spectral 

function provides another very convenient multiple scattering description of the k -resolved 

electronic structure, one which can be generalised to some non-crystalline systems such as 

substitutionally disordered lattices (see [10]). 

According to Faulkner and Stocks [10], the Bloch spectral function is defined by 

    .
0 0 0

0

1
, Im , ;ni

B n
n cell

A e d G 


   
k Rk r r r R  (13.1) 

in which nR  is a lattice vector and the Green’s function is assumed to satisfy a periodicity condition 

    , ; , ;n nG G    r R r R r r  (13.2) 

This is always true for an ordered crystal, and also for the configurationally averaged Green’s function 

of a substitutionally disordered crystal. 

If we use the eigenfunction expansion of the Green’s function using Bloch states , k  for an ordered 

crystal 
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in which 
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Hence, from (13.1) 
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g  being a reciprocal lattice vector.  Now if the Bloch functions are normalised over the crystal: 

     
2 2 2

, , 0 , 0

0

1 i i
i cell i cell

d d u N d u      k k kr r r r r r  

we get  



36 

 

    ,
, ,,

1 1
, ImB

N
A

N i


 

   
   





   
 

  k g
g gk g

k  (13.3) 

Thus, for an ordered crystal the spectral function takes the form of a set of delta functions mapping 

out the band structure.  If the energy bands are given in the reduced zone scheme this reads simply 

    ,,BA 


     kk  (13.4) 

The band energies ,k  are, of course, just the eigenvalues that are found in KKR theory (see section 

9.2). 

We now return to equation (13.1) and obtain a multiple scattering formula for the spectral function 

using   

             
,

, ; , , , ,n nm m n n
L n LL L m L L LL nm

L L

G Z Z Z X           


    r r r R r R r r  (13.5) 

Suppose the crystal is monatomic; then we can drop the site labels on the single scatterer functions 

Z  and X .  Note also that since these functions are, by definition, real (for real energies), we can ignore 

the last term in (13.5). Defining  

      0 0 0

0

, ,LL L L

cell

a d Z Z     r r r  (13.6) 

we obtain 

     . 01
, Im ni n

B LL LL
n LL

A e a   


 



   k Rk  

But this contains the lattice Fourier transform of the  matrix:  

    . 0, ni n
LL LL

n

e     k Rk  (13.7) 

So, the multiple scattering formula for the Bloch spectral function of a monatomic ordered crystal is 

      
1

, Im ,B LL LL
LL

A a   


 



  k k  (13.8) 

KKR theory (section 9.2) ensures that  Im , k  has exactly the pole structure defining the energy 

bands needed to agree with equation (13.4). 

The generalisation to an ordered multi-atomic crystal is clear.  Let the distinct atoms within the unit 

cell be labelled , ,   etc.  The lattice Fourier transform eliminates the spatial coordinates relating to 

the origin of each unit cell, and both the LL   and LLa    matrices in (13.8) now become matrices in , ,   

etc also.  Thus  

      
1

, Im ,
LLB LL
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A a 



   
  



  k k  (13.9) 

and the spectral function breaks up into components relating to both site and angular momentum. 
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14  Reference Systems 
Consider the on-shell τ matrix equation, defined in section 7,  

 -1 -1( - ) t g  (14.1) 

Now add and subtract the inverse of a single-site t-matrix Rt  describing a reference system:  

 -1 -1 -1 -1( - - )R R t t t g  (14.2) 

This may be associated with a single-site potential, but it doesn’t have to be.  The reference system 

is defined for our purposes as that system which has the τ matrix  R , given by 

 -1 -1( - )R R t g  (14.3) 

Clearly, using (14.3) in (14.2), we can write  

 
-1 -1( )R

R R

 

 

  

  
 (14.4) 

where 

 -1 -1= R t t  (14.5) 

(14.4) looks like a Dyson equation and has the formal solution 

 R R R  K     (14.6) 

where  

 R K K   (14.7) 

Clearly the K matrix is given by 

  
11

R


 K    (14.8) 

Equations (14.3), (14.6) and (14.8) show how to express the τ matrix in terms of that of a reference 

system.  This turns out to be useful when the reference system can be chosen to have especially 

convenient properties and to be close to the real system.  Examples are the KKRCPA [12] and Swiss 

cheese. 

Zeller et al [8] derive a similar set of equations using what they term the “structural Green’s function 

matrix” G , which is extremely close to the τ matrix and is given in the implied site and angular 

momentum representation by 

 G g g tG  

which is to be compared with 

 t tg   

It is easy to see by iterating these equations that the relationship between the two quantities is just 

 

 

G g g g

t tGt




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For completeness, the following table gives parallel “skeleton” derivations of the present equations 

and those of Zeller et al: 

This treatment Zeller et al 
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R R
  G g t  

and and 

1 1
R

      1 1
R   G G t  

where where 

1 1
R
  t t  R  t t t  

Thus Thus 

R R      R R G G G tG  

Formally Formally 

R R R  K     R R R G G G G  

where where 

 
11

R

R




 

 

K K 

 
 

 
11

R

R

  






 

 

t tG

t G

 
 

 

For some applications, especially in deriving the KKRCPA and its fluctuation formulae [12], it is 

helpful to do a little more development. Writing out the site indices in (14.7) and defining  

 -1 -1( ) ( )i i i
Rt t    (14.9) 

gives 

ij i i in nj
ij r

n

K K      

Following the standard manipulations (see section 6) it is obvious that 

 ij i i in nj
ij r

n i

K k k K 


   (14.10) 

where 
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-1

1-i i ii i
rk       (14.11) 

or, reverting to matrix notation, 

 
-1-1

R
   K k   (14.12) 

where 

 
 

   1-

i
ijij

ij
R r ijij

k 

 





k


 (14.13) 

 

1.1 The single impurity problem 
Consider a lattice of pure A atoms, each described by a t-matrix At .  Its  matrix can be found by the 

KKR methods outlined in section 9.2: 

      1ijiij
A A A Ad e     

q.R
q q q t g q    (14.14) 

Now imagine that the atom on site 0 is replaced by a B atom with t-matrix Bt .  In the language of this 

section, we take the reference system to be the pure A lattice, and express the  matrix of the 

impurity system in terms of A  by means of (14.4) and (14.5).  From (14.4) we have 

 
, ,

ij ij im mn nj ij im mn nj
A A A A

m n m n

              

where  

  1 1
0

mn
mn m A Bt t          

Thus, for our impurity system, the  matrix is given by 

 0 0 0 0ij ij i j ij i j
A A A A             (14.15) 

It is now very easy to give the full solution of (14.15) by working out the following four cases: 

 

 

 

 

   

1
00 00 1 1 00

1
0 0 1 1 00

1
0 00 1 1 0

1
0 1 1 00 1 1 0

1

1 0

1 0

1 , 0

A A B A

i i
A A B A

j j
A A B A

ij ij i j
A A A B A A B A

t t

t t i

t t j

t t t t i j

  

  

  

    


 


 


 


   

   
 

    
 

    
 

      
 

 (14.16) 

It’s satisfying that this reference system formalism gives such a rapid solution for the full  matrix of 

the impurity system [12].  Most treatments (see [13], for examples) content themselves with solving 

for the site-diagonal element 00 .  
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1.2 The coherent potential approximation in multiple scattering theory – the 

KKRCPA 
A random substitutional alloy has a regular lattice the sites of which are occupied randomly by A 

atoms and B atoms with probabilities c and 1 c respectively; c is the concentration of A in the 

alloy.  Examples are Cu-Ni, Ag-Pd and so on.  How to calculate the electronic structure of such a 

disordered system?  The coherent potential approximation is one (good) approach.  The goal of the 

CPA is to define an effective ordered system that describes the electronic structure averaged over all 

possible alloy configurations.  Now in MST, an ordered system has translational symmetry; in the 

simplest cases each of the lattice sites is occupied by the same kind of effective scatterer, described 

by a t-matrix Ct .  To mimic a disordered system, the effects of disorder must somehow be smuggled 

into Ct .  The CPA does this by a kind of mean field argument: 

1. Take the effective, ie coherent, lattice on which every site has scatterer Ct  and the system as 

a whole has  matrix C  , and replace the atom on site 0 by a real A atom. Calculate the 

matrix of this impurity system in terms of Ct , C  and At . Call the result  ,A
C At t ; it’s clearly 

a function of Ct and At . 

2. Repeat with a B impurity at site 0 to obtain  ,B
C Bt t . 

3. Determine Ct  by requiring that the single-site average of the two impurity  matrices is 

equal to C  

  ,00 ,00 001A B
Cc c      (14.17) 

This requires a self-consistency cycle: guess an initial Ct as input to a calculation of the  matrices of 

the coherent lattice and the impurity systems using (9.4) and (14.16), then use (14.17) to generate 

an output Ct , and keep going until output equals input.   

Clearly, the impurity results (14.16) are the key to making this scheme possible.  What you find, 

interestingly, is that the resulting coherent t-matrix Ct corresponds to a complex potential.  Thus, 

amongst other things, repeated scatterings lead to something like a mean free path for the electrons 

and the energy bands are smeared out as a function of wave-vector5.  A final comment is that while 

the KKRCPA condition (14.17) pertains only to the diagonal element at the impurity site 0, it can be 

shown [12] from (14.16) that the Ct thus obtained guarantees that all the elements of the  matrices 

satisfy the KKRCPA condition, which can thus be written in matrix form: 

  1A B
Cc c      (14.18) 

  

 

 

  

                                                           
5 This means that one can’t define bands – energy versus momentum relations – at all.  But the Bloch spectral 
function (section 13) now comes into its own as the right way to describe the average electronic structure, 
Fermi surfaces etc. 
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Appendix A: Notation and Mathematical Preliminaries 
 

Notation 

Here are some details of the notation used in these notes. Most of these are standard. The 

dependence of most quantities on energy is usually suppressed, unless explicitly required. 

 

Angular momentum 

 
( , )

( , )

L l m

L l m



 
 (A1) 

 

Bessel functions 

The forms defined in Schiff [2] are used, but the argument is just written as r , rather than the 

strictly correct r  , just to simplify equations. 

 

Free space solutions 

For notational simplicity, we define upper case Bessel functions (with vector arguments) as follows: 

      ˆ
L l LJ j r Yr r  (A2) 

and likewise for Neumann and Hankel functions.  Even though the radial functions may be real, the 

vector function is complex because of the spherical harmonic.  We use the following notation to 

denote this: 

      * ˆ
L l LJ j r Yr r  (A3) 

 

Single-scatterer solutions 

In a similar way, the following types of single-scatterer solution are used 

 
     

     i *

ˆ

ˆ

i
L l L

i
L l L

Z z r Y

Z z r Y





r r

r r
 (A4) 

 

Spherical harmonics 
The forms defined by Pendry ([4], p268) are used.  These are complex functions with the well-known 

non-analyticity 

    ˆ ˆ( 1)m
L LY Y  r r  (A5) 

Further useful relations include: 
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Inversion: 

        ˆ ˆ, 1
l

L L LY Y Y        r r  (A6) 

Orthonormality: 

    ˆ ˆ ˆ
L L LLd Y Y 

  r r r  (A7) 

Addition theorem: 

      
2 1

ˆ ˆ cos
4

L L l
m

l
Y Y P 



 
  r r  (A8) 

  being the angle between r  and r .  Here lP  is a Legendre polynomial.  A special case of this is the  

Sum rule: 

 
2 2 1

ˆ( )
4

L
m

l
Y




 r  (A9) 

 

Wigner 3J symbols 

The general 3J symbol obeys the triangle rules: 

 0 0
l l l

unless l l l l l and m m m
mm m

  
            

  
 (A10) 

A parity rule also applies to the special symbol 

 0
00 0

l l l
unless l l l even

  
     

 
 (A11) 

When these conditions hold, the explicit formulae for the 3J symbols (taken from Brink and Satchler 

[9], p.34) are as follows: 

 
!

( 1) ( , , )
00 0 ( )!( )!( )!

g
l l l g

l l l
g l g l g l

  
    

    
 (A12) 

and 

 
1/2

( 1)
( , , ) ( , , ) ( , , )

(2 1)

l l ml l l
l l l F L L L S L L l

mm m l

     
       

    
 (A13) 

where 2g l l l     (note that the parity rule (A11) means that g  is an integer in (A12)), and 

1/2
( - )!( - )!( - )!

( , , )
( 1)!

l l l l l l l l l
l l l

l l l

        
        

 

 
1/2

( , , ) (2 1)( )!( - )!( )!( - )!( )!( - )!F L L L l l m l m l m l m l m l m                
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 
-1

( , , ) (-1) ( - - )!( - )!( - )!( - - )! !( - - )!n

n

S L L l l m n l l m n l m n l l m n n l l l n                

in which n  runs over all integers which do not lead to negative factorials.  Further useful properties 

include 

Orthogonality: 

  
3 3 3 3

1 2

1 2 3 1 2 3

3

1 2 3 1 2 3

2 1 l l m m
l l

l l l l l l
l

m m m m m m
  

  
   

  
  (A14) 

 

  
1 1 2 2

3 3

1 2 3 1 2 3

3

1 2 3 1 2 3

2 1 m m m m
l m

l l l l l l
l

m m m m m m
  

  
   

   
  (A15) 

 

Symmetry: 

   1 2 31 2 3 1 2 3

1 2 3 1 2 3

1
l l ll l l l l l

m m m m m m

    
    

     
 (A16) 

   1 2 31 2 3 2 3 1 2 1 3

1 2 3 2 3 1 2 1 3

1
l l ll l l l l l l l l

m m m m m m m m m

      
       

     
 (A17) 

 

Gaunt numbers 

The Gaunt number defined by 

      ˆ ˆ ˆ ˆ( , , ) L L LC L L L drY Y Y 
    r r r  (A18) 

is clearly invariant under any interchange between the L s.  Reversing the direction of the variable of 

integration and using (A6) gives 

 ( , , ) (-1) ( , , )l l lC L L L C L L L       (A19) 

Hence the sum of the l s must be even, as guaranteed by the parity rule (A11) for the 3J symbols 

occurring in the explicit formula 

 
(2 1)(2 1)(2 1)

( , , )
00 04

l l l l l ll l l
C L L L

mm m

          
           

 (A20) 

Clearly, then, the Gaunt Number also conforms to the triangle rules (A10).  Because the 3J symbols 

(and therefore the Gaunt numbers) are real (Why? see Brink and Satchler [9], p.34) this gives 

another useful relation: 

     ˆ ˆ ˆ ˆ( , , )

( 1) ( , , )

L L L

m m m

C L L L drY Y Y

C L L L

  

 

  

  

  

 r r r
 

Hence 
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 ( , , ) ( , , )C L L L C L L L     (A21) 

which is also evident from (A16). 

 

The Multiple Scatterer’s Friend(s) 

The standard Multiple Scatterer’s Friend6 expands a Hankel function centred on one site in terms of 

Bessel functions centred on another site.  In fact, as quoted by Lloyd and Smith [1] (p. 89), there is a 

family of similar relations: 

  ( ) ( )L LL L
L

J d J 



r -R R r  (A22) 

  ( ) ( )L LL L
L

H d H for 

 



 r -R R r r R  (A23) 

  +( - )= ( )LLL L
L

H Hik g for 


  Rr R r r R  (A24) 

(A24) is the form most often used in multiple scattering theory. Here 

   1

1

1

-( )
14 ( 1) ( , , ) ( )lm l l

LL L
L

g ik i i C L L L H
 


   R R  (A25) 

and 

   1

1

1

-( )
14 ( 1) ( , , ) ( )lm l l

LL L
L

d i i C L L L J



  R R  (A26) 

 

 

 

 

                                                           
6 I recall that John Pendry once old me that this term was coined by Paul Marcus.  It stuck with me. 
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Appendix B: Notes on Spherical Bessel Functions 
 

Properties  
Taken from the book “Nonrelativistic Quantum Mechanics” by A Z Capri.  Checked against Schiff’s 

“Quantum Mechanics” and J R Taylor’s “Scattering Theory” (which uses Riccati-Bessel functions).  In 

this appendix, the function lz  stands for any of the four functions (1) (2), , ,l l l lj n h h  related by 

(1)

(2)

l l l

l l l

h j in

h j in

 

 
 

 
 

Differential equation              
 

 
2

2

2 2

12
0l

l ld d
k z kr

dr r dr r

  
    

 
 

 

 

Wronskian                    
2

( ) ( ) 1
( ) ( ) ( )l l

l l

dn x dj x
W x j x n x

dx dx x
    

 

 

Integral representation  
1

2

( 1) 1
( ) (1 ) cos( )

2 !

l
l

l l

x
z x t xt dt

l 
   

 

 

Recursion formulae 

 

 

1 1

1

1 1 2

1 1
1

2 1

1

0
1

( ) ( ) ( )

l l

l
l l

l l l l

l l
l l

l
z z z

x

dz l
z z

dx x l

j x n x n x j x
x

d
x z x z

dx

 



 

 



 
    

  
 

      


  

    

 

1
l l

l l

d
x z x z

dx
 


      

1

1
l l

l d
z z

x dx


 
  
 
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( 1) 1
( 1)

l l
l l

zd
z x

dx x
 



 
   

 
 

Generator 

0

1
l

l
l

d
z x z

x dx

 
  

 
 

 

Asymptotic behaviour 

As x  : 

1 1 ( 1)
( ) sin cos

2 2
l

l l
j x x x

x x

    
      

   
 

1 1 ( 1)
( ) cos sin

2 2
l

l l
n x x x

x x

    
      

   
 

Numerical tests show that convergence to these asymptotic limits is slow; apart from the trivial case 

of 0l  ,  only about 3-figure accuracy is obtained at 410x   . 

As 0x : 

 
( )

2 1 !!

l

l

x
j x

l



 

 
 

1

2 1 !!
l l

l
n x

x 


  

Numerical tests show that these asymptotic formulae give 7-figure accuracy for 45 10x   . 

 

Relationship to standard cylinder functions 

   

   
 

 

1/2

1/2

1/2
1

1/2

2

1
2

l l

l

l l

j x J x
x

n x J x
x









 

 
  
 

 
   

 

 

 

Some integrals 

       
2 22 3

0 0 0 1

1

2
j x x dx x j x n x j x  

   

       
2 22 3

0 0 0 1

1

2
n x x dx x n x j x n x  

   

       
2 22 3

1 1

1
0

2
l l l lj x x dx x j x j x j x l 

   
   
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   2 2
0 1j x x dx x j x  

   1 0j x dx j x   

 

Explicit Formulae 

0l   
 0

1
sinj x

x
  

 0

1
cosn x

x
   

1l   
   1 2

1 1
sin cosj x x

x x
   

   1 2

1 1
sin cosn x x

x x
    

2l   
   2 3 2

3 1 3
sin cosj x x

x x x

 
   
 

 

   2 2 3

3 3 1
sin cosn x x

x x x

 
    

 
 

3l   
   3 4 2 3

15 6 15 1
sin cosj x x

x x x x

   
      
   

 

   3 3 4 2

15 1 15 6
sin cosn x x

x x x x

   
        
   

 

4l   
   4 5 3 4 2

105 45 1 105 10
sin cosj x x

x x x x x

   
        
   

 

   4 4 2 5 3

105 10 105 45 1
sin cosn x x

x x x x x

   
         
   

 

5l   
   5 6 4 2 5 3

945 420 15 945 105 1
sin cosj x x

x x x x x x

   
         
   

 

   5 5 3 6 4 2

945 105 1 945 420 15
sin cosn x x

x x x x x x

   
          
   

 

6l   
   6 7 5 3 6 4 2

10395 4725 210 1 10395 1260 21
sin cosj x x

x x x x x x x

   
          
   

 

   6 6 4 2 7 5 3

10395 1260 21 10395 4725 210 1
sin cosn x x

x x x x x x x

   
           
   
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These functions are depicted in the following figures. 
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