Multiple Scattering and Tight-Binding

Connecting the formalisms

Paul Durham

Scientific Computing Department, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK

13 March 2021

Abstract

These notes (from my boyhood in Bristol) use multiple scattering theory (**MST**) to solve the perfect lattice and single impurity problems (see [1], [2]). I also give the corresponding derivations in tightbinding theory (**TBT**) and show how similar in structure they are to MST. This connection was suggested by Shiba [3] and Anderson's paper [4] on magnetic impurities. The classic TBT treatment of the impurity problem is by Slater and Koster [5].

Contents

1	Fundamental equations	. 2
2	The perfect lattice	.4
3	The single impurity	.5
References9		

1 Fundamental equations

The **MST** problem refers to a system of non-overlapping spherical scatterers located at points $\{\mathbf{R}_i\}$ and described by t-matrices $t_{i,L}(\varepsilon)$ - note that $L \equiv (I,m)$. The scattering path matrix is given by

$$\tau_{LL'}^{ij}(\varepsilon) = t_{i,L}(\varepsilon) + \sum_{L''} \sum_{k \neq i} t_{i,L}(\varepsilon) G_{LL''}(\mathbf{R}_{ik}, \varepsilon) \tau_{L''L'}^{kj}(\varepsilon)$$
(1.1)

with $\mathbf{R}_{ij} = \mathbf{R}_i - \mathbf{R}_j$. For what follows we don't need to display the full angular momentum indices and energy variables – only the site indices come into the development. So we'll use an obvious simplified notation and rewrite (1.1) as

$$\tau^{ij} = t_i \delta_{ij} + \sum_{k \neq i} t_i G^{ik} \tau^{kj}$$
(1.2)

When put on the energy shell, G^{ij} becomes the real-space structure constant matrix [6] which acts as a propagator linking sites *i* and *j*. This is why the term k = i is excluded from the sum in (1.2); all repeated scatterings from the potential at site *i* are included in t_i . Indeed G^{ij} depends on the Hankel functions $h_i (\mathbf{R}_i - \mathbf{R}_j)$ [6] and these are infinite when i = j. Therefore, to simplify the formulae, we modify the structure constants such that the site diagonal term is defined to be zero [6] and then we can write

$$\tau^{ij} = t_i \delta_{ij} + \sum_k t_i G^{ik} \tau^{kj}$$
(1.3)

in which G^{ik} is understood to mean this modified structure constant matrix.

The TBT treatment, on the other hand, starts with the Hamiltonian

$$\mathcal{H} = \sum_{i} \varepsilon_{i} \boldsymbol{a}_{i}^{\dagger} \boldsymbol{a}_{i} + \sum_{ij} T_{ij} \boldsymbol{a}_{i}^{\dagger} \boldsymbol{a}_{j}$$
(1.4)

where ε_i is a single-site energy¹, T_{ij} is the hopping integral between sites i and j and a_i^{\dagger} is the creation operator for the Wannier state $|i\rangle$ on site i. The Green's function, or resolvent, is, as usual,

$$\mathcal{G}(\varepsilon) = (\varepsilon - \mathcal{H})^{-1} \tag{1.5}$$

and in the Wannier state representation

$$G_{ij}(\varepsilon) = \langle i | (\varepsilon - \mathcal{H})^{-1} | j \rangle = \langle 0 | a_i (\varepsilon - \mathcal{H})^{-1} a_j^{\dagger} | 0 \rangle$$
(1.6)

 $|0\rangle$ being the vacuum. The basic method of solution is to work with the set of equations

¹ We could/should label the single-site energy by atomic quantum numbers, in particular the angular momentum. Then \mathcal{E}_i would become a vector $\mathbf{\epsilon}_i$ and \mathcal{T}_{ij} a matrix \mathbf{T}_{ij} in these labels. However, in the spirit of (1.2), we will suppress these labels in TBT and focus only on site labels.

$$\sum_{k} \langle i | (\varepsilon - \mathcal{H}) | k \rangle G_{kj}(\varepsilon) = \delta_{ij}$$
(1.7)

This is how Anderson [4] did the impurity problem. Indeed, the perfect lattice is easily treated using the lattice Fourier transform of (1.7). Here, however, I'm going to write it in a different way, one in which the mathematical connection with MST is clear.

First, define the following operators

$$\mathcal{L}(\varepsilon) = \varepsilon - \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i}$$

$$\mathcal{T} = \sum_{i,j} T_{ij} a_{i}^{\dagger} a_{j}$$
 (1.8)

Hence, omitting the energy arguments, we can write the Green's function operator (1.5) as

$$\mathcal{G} = (\mathcal{L} - \mathcal{T})^{-1} = (1 - \mathcal{L}^{-1} \mathcal{T})^{-1} \mathcal{L}^{-1}$$
(1.9)

and this in turn can be written

$$\mathcal{G} = \mathcal{L}^{-1} + \mathcal{L}^{-1} \mathcal{T} \mathcal{G}$$
(1.10)

This already has the look of a Dyson equation, and resemblance becomes closer when we put it in a site representation:

$$\langle i | \mathcal{L}^{-1} | j \rangle = \langle i | \left(\varepsilon - \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} \right)^{-1} | j \rangle = \left(\varepsilon - \varepsilon_{i} \right)^{-1} \delta_{ij} = \boldsymbol{l}_{i} \left(\varepsilon \right) \delta_{ij}$$
(1.11)

The quantity

$$\boldsymbol{l}_{i}^{-1}(\varepsilon) \equiv \frac{1}{\varepsilon - \varepsilon_{i}} \tag{1.12}$$

is called (by Shiba [3]) the *locator* of site *i*. Further,

$$\langle i | \mathcal{T} | j \rangle = \langle i | \sum_{k,l} T_{kl} a_k^{\dagger} a_l | j \rangle = T_{ij}$$
 (1.13)

Equation (1.10) thus reads, in a site representation,

$$G_{ij} = \boldsymbol{\ell}_{i}^{-1} \delta_{ij} + \boldsymbol{\ell}_{i}^{-1} \sum_{k} T_{ik} G_{kj}$$
(1.14)

This is our "fundamental" equation of **TBT**. A glance at (1.3) reveals the equivalence, as regards the site indexing, to **MST**. For convenience, here's a translation table between the two approaches:

MST	ТВТ
τ	G
G	Т
t	I ⁻¹

2 The perfect lattice

Consider first the **MST** approach to band theory, the KKR method. The set of vectors $\{\mathbf{R}_i\}$ now form a periodic lattice in which (in the simplest case) each site has t-matrix t ie $t_i = t \quad \forall i$. The scattering path matrix (1.3) is thus given by

$$\tau^{ij} = t\delta_{ij} + t\sum_{k} G^{ik} \tau^{kj}$$
(2.1)

We exploit translational invariance by using lattice Fourier transforms:

$$\tau^{ij} = \Omega^{-1} \int_{BZ} d\mathbf{q} e^{i\mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \tau(\mathbf{q})$$

$$G^{ij} = \Omega^{-1} \int_{BZ} d\mathbf{q} e^{i\mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} G(\mathbf{q})$$
(2.2)

The integrals are carried out over the Brillouin zone whose volume is $\,\Omega$. Equation (2.1) is then solved to give

$$\tau(\mathbf{q}) = t + tG(\mathbf{q})\tau(\mathbf{q}) = (t^{-1} - G(\mathbf{q}))^{-1}$$

The scattering path matrix for the perfect lattice is thus, in all its variables and indices,

$$\tau_{LL'}^{ij}(\varepsilon) = \Omega^{-1} \int_{BZ} d\mathbf{q} e^{i\mathbf{q}\cdot(\mathbf{R}_i - \mathbf{R}_j)} \left[\left(t^{-1}(\varepsilon) - G(\mathbf{q}, \varepsilon) \right)^{-1} \right]_{LL'}$$
(2.3)

The KKR condition is now easily deduced. We seek poles of the Green's function, which are also the poles of the T-matrix and thus of the $\tau(\mathbf{q}, \varepsilon)$. But by the rules of matrix inversion

$$\tau_{\iota\iota'}(\mathbf{q},\varepsilon) = \left[\left(t^{-1}(\varepsilon) - G(\mathbf{q},\varepsilon) \right)^{-1} \right]_{\iota\iota'} \\ = \frac{\left[\text{cofactor of } \left(t_{\iota}^{-1}(\varepsilon) \delta_{\iota\iota'} - G_{\iota\iota'}(\mathbf{q},\varepsilon) \right) \right]}{\left\| t^{-1}(\varepsilon) - G(\mathbf{q},\varepsilon) \right\|}$$

Hence, the eigenvalues of the perfect lattice, ie the bands, are given by the zeros of the so-called KKR determinant:

$$\left|t^{-1}(\varepsilon) - G(\mathbf{q},\varepsilon)\right| = 0 \tag{2.4}$$

In **TBT**, the equivalent perfect lattice is defined by a single site energy \mathcal{E}_a , the same on all sites, and hopping integrals which depend only on $\mathbf{R}_{ij} \equiv \mathbf{R}_i - \mathbf{R}_j$. Hence, from (1.12)

$$\boldsymbol{l}_{i}^{-1}(\varepsilon) = \frac{1}{(\varepsilon - \varepsilon_{a})} \equiv \boldsymbol{l}^{-1} \quad \forall i$$
$$T_{ij} = T(\mathbf{R}_{i} - \mathbf{R}_{j}) = \Omega^{-1} \int_{BZ} d\mathbf{q} e^{i\mathbf{q}\cdot(\mathbf{R}_{i} - \mathbf{R}_{j})} T(\mathbf{q})$$

and from (1.13) we can again introduce lattice Fourier transforms

$$T_{ij} = T(\mathbf{R}_{i} - \mathbf{R}_{j}) = \Omega^{-1} \int_{BZ} d\mathbf{q} e^{i\mathbf{q}\cdot(\mathbf{R}_{i} - \mathbf{R}_{j})} T(\mathbf{q})$$
$$G_{ij}(\varepsilon) = G(\mathbf{R}_{i} - \mathbf{R}_{j}, \varepsilon) = \Omega^{-1} \int_{BZ} d\mathbf{q} e^{i\mathbf{q}\cdot(\mathbf{R}_{i} - \mathbf{R}_{j})} G(\mathbf{q}, \varepsilon)$$

Hence the correspondences noted in section 1, together with (2.3), yield

$$G(\mathbf{q},\varepsilon) = \frac{1}{\left(\boldsymbol{\ell}(\varepsilon) - T(\mathbf{q})\right)} = \frac{1}{\left(\varepsilon - \varepsilon_a - T(\mathbf{q})\right)}$$

The TB bands are obviously given by

$$\varepsilon(\mathbf{q}) = \varepsilon_a + T(\mathbf{q}) \tag{2.5}$$

which is the analogue of (2.4)². For example, a [1D] chain of lattice spacing a with nearest-neighbour hopping, ie $T_{ij} = T(\delta_{i,j+1} + \delta_{i,j-1})$, gives $T(q) = 2T\cos(qa)$. Thus

 $\varepsilon(q) = \varepsilon_a + 2T\cos(qa)$ which is the familiar result from elementary TBT.

3 The single impurity

This problem is defined by a lattice $\{\mathbf{R}_i\}$ in which each site has an A atom, except site *i* which has a B atom. In MST, then,

$$\boldsymbol{t}_{j} = \boldsymbol{t}_{A} + \left(\boldsymbol{t}_{A} - \boldsymbol{t}_{B}\right) \boldsymbol{\delta}_{ji} \tag{2.6}$$

The Green's function at the impurity site is determined by the *i*-site-diagonal element of τ , which is given by (1.3) and (2.6) as

$$\tau^{ii} = t_{\scriptscriptstyle B} + t_{\scriptscriptstyle B} \sum_{k} G^{ik} \tau^{k}$$

But it's obvious that for $j \neq i$

$$\tau^{ji} = \left[\sum_{k} \tau^{jk} G^{ki}\right] t_{B}$$

so that

$$\tau^{ii} = t_{B} + t_{B} \left[\sum_{j,k} G^{ij} \tau^{jk} G^{ki} \right] t_{B}$$
(2.7)

This can be written as follows:

² Recall footnote 1: if we retained the atomic quantum numbers (angular momenta etc) on the site energies then (2.5) for the band energies would be replaced by the determinantal condition $\|\varepsilon(\mathbf{q}) - \varepsilon_a - \mathbf{T}(\mathbf{q})\| = 0$.

$$\tau^{ii} = t_{B} + t_{B}F^{i}t_{B}$$

$$F^{i} = \sum_{j,k} G^{ij}\tau^{jk}G^{ki}$$
(2.8)

 F^{i} represents the contribution from all paths starting and ending at site *i*. Call f_{n}^{i} the sum over all paths with *n* steps, so that

$$F^i = \sum_n f_n^i$$

The corresponding quantity for the perfect, pure A, lattice, having an A atom on site i, is

$$F_0^i = \sum_{jk} G^{ij} \tau_0^{jk} G^{ki} = \sum_n f_{0,n}^i$$

Here the subscript 0 denotes the perfect lattice. Now comes the trick. Let $\tilde{f}_{0,n}^i$ be the sum over all paths of length n which avoid site i as an intermediate step. Then, of all the paths which contribute to f_n^i , those which avoid site i altogether are included in $\tilde{f}_{0,n}^i$, while the rest hit site I for the first time at the m^{th} step (m < n), pick up a scattering t_B , and move off again, possibly to return later in the path. Hence

$$f_n^i = \tilde{f}_{0,n}^i + \sum_m^n \tilde{f}_{0,m}^i t_B f_{n-n}^i$$

and if $\tilde{F}_0^i \equiv \sum_n \tilde{f}_{0,n}^i$ we find

$$\mathbf{F}^{i} = \tilde{\mathbf{F}}_{0}^{i} + \tilde{\mathbf{F}}_{0}^{i} t_{B} \mathbf{F}^{i}$$
(2.9)

Similarly, for the corresponding paths, $f_{0,n}^i$, of the pure A lattice, we have

$$f_{0,n}^{i} = \tilde{f}_{0,n}^{i} + \sum_{m}^{n} \tilde{f}_{0,m}^{i} t_{A} f_{0,n-m}^{i}$$

and

$$F_0^i = \tilde{F}_0^i + \tilde{F}_0^i t_A F_0^i \tag{2.10}$$

Now do some careful matrix algebra. Write, using (2.8),

$$\tau_{B} \equiv \tau^{ii} = t_{B} + t_{B}F^{i}t_{B}$$

$$\tau_{A} \equiv \tau_{0}^{ii} = t_{A} + t_{A}F_{0}^{i}t_{A}$$
(2.11)

From (2.9) and (2.10), we have

$$F^{i} = \left[\mathbf{1} - \tilde{F}_{0}^{i} t_{B}\right]^{-1} \tilde{F}_{0}^{i}$$
$$F_{0}^{i} = \left[\mathbf{1} - \tilde{F}_{0}^{i} t_{A}\right]^{-1} \tilde{F}_{0}^{i}$$

Thus

$$\begin{aligned} \tau_{B} &= t_{B} + t_{B} \left[\mathbf{1} - \tilde{F}_{0}^{i} t_{B} \right]^{-1} \tilde{F}_{0}^{i} t_{B} = t_{B} \left[\mathbf{1} - \tilde{F}_{0}^{i} t_{B} \right]^{-1} \\ \tau_{A} &= t_{A} \left[\mathbf{1} - \tilde{F}_{0}^{i} t_{A} \right]^{-1} \end{aligned}$$

Therefore

$$t_B^{-1} - \tau_B^{-1} = \tilde{F}_0^i = t_A^{-1} - \tau_A^{-1}$$

This allows us to write τ_{B} in terms of $\tau_{A} = \tau_{0}^{ii}$ which, in turn, is just the site-diagonal element of the pure A lattice τ matrix and is therefore given by the result (2.3) of section 2. Thus the exact solution to the MST impurity problem is

$$\tau_{B} = \tau_{A} \left[1 + \left(t_{B}^{-1} - t_{A}^{-1} \right) \tau_{A} \right]^{-1}$$
(2.12)

where

$$\left[\tau_{A}(\varepsilon)\right]_{LL'} = \Omega^{-1} \int_{BZ} d\mathbf{q} \left[\left(t_{A}^{-1}(\varepsilon) - G(\mathbf{q},\varepsilon)\right)^{-1}\right]_{LL'}$$
(2.13)

The corresponding model **TBT** impurity system has site energies \mathcal{E}_A everywhere on the periodic lattice except site *i* which has site energy \mathcal{E}_B . If we take the hopping integrals T_{ij} to be the same as in the pure A lattice, then the problem is specified by the locators

$$\boldsymbol{\ell}_{j} = \boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{j}$$
$$\boldsymbol{\varepsilon}_{j} = \boldsymbol{\varepsilon}_{A} + (\boldsymbol{\varepsilon}_{B} - \boldsymbol{\varepsilon}_{A})\boldsymbol{\delta}_{ji}$$

or

$$\boldsymbol{l}_{j} = \boldsymbol{l}_{A} + (\boldsymbol{l}_{B} - \boldsymbol{l}_{A}) \delta_{ji}$$
$$\boldsymbol{l}_{A(B)} \equiv \varepsilon - \varepsilon_{A(B)}$$

Substituting this into the fundamental equation (1.14) gives

$$\boldsymbol{G}_{B} \equiv \boldsymbol{G}_{ii} = \boldsymbol{I}_{B}^{-1} + \boldsymbol{I}_{B}^{-1} \left[\sum_{jk} T_{ij} \boldsymbol{G}_{jk} T_{ki} \right] \boldsymbol{I}_{B}^{-1}$$

with a corresponding expression for the pure A lattice. This is just the analogue of the **MST** expression (2.7). The whole tricky argument about paths carries through, and we can leap to the answer:

$$G_{B} = G_{A} \left[1 + (\boldsymbol{l}_{B} - \boldsymbol{l}_{A}) G_{A} \right]^{-1}$$

$$G_{A} \left(\varepsilon \right) = \Omega^{-1} \int_{BZ} d\mathbf{q} \left[\boldsymbol{l}_{A} \left(\varepsilon \right) - T(\mathbf{q}) \right]^{-1}$$
(2.14)

Finally, note that (2.12) is at the heart of the KKRCPA method [1] for random substitutional alloys, and (2.14) is a key result for the Anderson model [4]. I wrote out this relatively complicated derivation, mainly as an example of the "combinatorial" approach (scattering path classification and counting) pioneered by, for example, John Beeby [2]. In my "Multiple Scattering Theory Primer" [6], using the general treatment of reference systems, I give a much simpler and shorter derivation of the impurity result in MST, which applies to the entire impurity τ matrix (not just its impurity site-diagonal component τ^{ii}).

References

- B L Gyorffy and G M Stocks in "Electrons in Disordered Metals and at Metallic Surfaces", ed P Phariseau, B L Gyorffy and L Scheire (NATO ASI Series B, Plenum, 1979).
- [2] J Beeby, Proc Roy Soc A **302**, 113 (1967).
- [3] H Shiba, Prog Theor Phys 46, 77 (1971).
- [4] P W Anderson, Phys Rev 124, 41 (1961).
- [5] Koster and J Slater, Phys Rev 96, 1208 (1954).
- [6] "My Multiple Scattering Theory Primer", post 11.1 in this series, PJD (DL 2021).