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Abstract 

These are working notes on wave-packets: their construction, behaviour and dynamics.  Wave 

equations in classical and quantum physics are often linear.  In such cases, wave-packets – linear 

combinations of solutions corresponding to different frequencies or energies – are themselves 

solutions of the wave equation, and may possess useful properties such as normalisability, 

localizability etc.  They also tend to exhibit the motion occurring in quantum systems in a way that 

corresponds to classical concepts.  These notes deal with the free motion and potential scattering of 

wave-packets, almost always in one dimension 1 .   

The basic theory here is (very) well known.  Indeed, the quantum dynamics is essentially trivial, 

because we are considering only motion under a Hamiltonian that is constant in time.  This means 

that we never have to solve the time-dependent Schrödinger equation (TDSE) directly; the solutions 

of the TDSE are simply linear combinations of energy eigenstate multiplied by the standard 

dynamical phase factor, which is what I mean by the term wave-packet.  The fun part comes with a 

set of numerical calculations on simple models that demonstrate in great detail how wave-packet 

dynamics actually works.  In these models, the wave-packets are always built from plane waves, 

because that fits the simple systems considered.  But the basic theory applies to wave-packets 

constructed from energy eigenstates of any kind, depending on the system. 
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1 Classical wave-packets 

1.1 The wave equation 

Consider the following partial differential equation governing the behaviour of a field  ,A x t  - we 

work only in 1  here: 

 
2 2

2 2 2

1A A

x c t

 


 
 (1.1) 

This would be the wave equation of classical electromagnetic theory, for example.  There are many 

other wave equations in classical physics [1].  The solutions are obviously waves: 

    , i kx tA x t Ne 
  (1.2) 

where the frequency is related, through the wave equation, to the wavelength by 

  k ck    (1.3) 

This plane wave moves with speed /c k  relative to the positive x-direction (in the sense that 

planes of equal phase – points of equal phase in this 1  case – move at this speed).  One says that 

the phase velocity is / k . 

Because the wave equation is linear, we know that a linear combination of the plane wave solutions 

is also a solution of the wave equation.  In the next section we construct and examine such a linear 

combination – a wave-packet. 

 

1.2 Properties of classical wave-packets 

Working in 1 , take a wave-packet of general shape:   

         1/2
, 2

i kx k t
A x t dka k e




 


   (1.4) 

Remember that here the frequency  k  is a function of k  because  ,A x t  is a solution of some 

wave equation that relates   and k .   

The normalisation 
2

1dx A  (or, equivalently,  
2

1dk a k  ) implies that A  has the dimensions 

 
1/2

length


 (and that a  has the dimensions  
1/2

length  ).  We also want  a k  to be peaked at 

0k k  with a k-width of 1l , say.  If we introduce a dimensionless function  f q  of a dimensionless 

variable q  such that  f q  is peaked at 0q   and   1 1f q when q  , then we can write  

     0a k Cf k k l   

  

where C  is some overall amplitude scale with dimensions  
1/2

length  that allows us to assume that 

 f q  is of order 1.  If we take  f q  to be normalised in the sense that 2 1dqf  , then it is easy to 
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show that normalisation of  ,A x t  implies that 
1/2C l .  Thus our canonical normalised form for 

the envelope function is 

     1/2
0a k l f k k l   (1.5) 

For example, if we take the standard normalised Gaussian form (see Appendix A  ) for  f q  

  
21/4 /2qf q e    (1.6) 

then 

    
2 2

0

1/2
/2

1/2

k k ll
a k e



  
  
 

 (1.7) 

Thus (1.4) becomes 

       
1/2

0,
2

i kx k tl
A x t dkf k k l e





 



 
  
 

  

or, using the dimensionless variable  0q k k l  , 

              0 0 0 01/2 //, 2
i k x k t i k q l k tiqx lA x t e l dq f q e e

  


   


   (1.8) 

 

We now look explicitly at the time evolution, ie the motion, of this wave-packet. 

 

1.2.1 At t=0 
From (1.8), we have 

 
     

 

0

0

1/2 /

1/2

,0 2

/

ik x iqx l

ik x

A x e l dqf q e

e l F x l












  (1.9) 

where the (dimensionless) Fourier transform of  f q  is  

      
1/2

2 iqF dq f q e  



   (1.10) 

Equation (1.9) says that at 0t  the wave-packet is a plane wave 0ik xe  whose amplitude varies in 

space as  /F x l .  Because we postulated the characteristics described above for  f q , we can say 

that the amplitude function  F   will be peaked at 0   with width ~1 in the sense that  F   will 

be of order 1 and  

   1 1F when    (1.11) 

Moreover, if  f q  is normalised, so is  F  : 



5 

 

    
2 2

1dq f q d F 
 

 

    (1.12) 

For example, the Gaussian form (1.6) for  f q  gives  
21/4 /2F e     (see Appendix A  ).  The 

amplitude function  /F x l  in (1.9) is thus peaked at 0x   and has width ~ l .  Hence the standard 

picture: 

 

 

 

 

 

1.2.2 For t>0 

Now we have to know the function  k .  Note, from (1.8) that if   is independent of k  the wave-

packet does not move at all; it just sits at 0x   oscillating up and down with frequency  1.  Since 

we know that wave-vectors near 0k  are important in the integral (1.8), we make a Taylor expansion 

of  k  around 0k : 

                                                           
1 Recall that in band theory a completely flat band means no hopping. But energy  bands are a quantum, not 
classical, concept.  The connection is just the wave equation in the two cases – see section 2.1. 

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Note 1: 

It’s easy to show that for the following wave-packet  

 

  (1.13) 

we get  

 

So this means that a wave-packet of the form (1.13) is localised at position  at time . 
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      
2

0 0 0 0 0 ...k v k k w k k        (1.14) 

where 

 

 

 

 

0

0

0 0

0

2

0 2

1

2

k k

k k

k

d k
v

dk

d k
w

dk

 















 (1.15) 

If we take only the linear term in (1.8) we get  

 
             

    

0 0 0

0 01/2

1/2 /1

0

, ~ , 2

/

i k x t iq x v t l

i k x t

A x t A x t l e dq f q e

l e F x v t l









  







 


 (1.16) 

Thus 
   1 ,A x t  has a phase function 

 0 0i k x t
e


 representing a plane wave moving with speed 

0 0/ k  relative to the x  direction and an amplitude function that is the same in shape as at 0t   

but now centred at 0x v t .  So the wave-packet moves with the group velocity 0v  relative to the x-

direction and maintains its width l .  There’s no wave-packet spreading in this linear approximation. 

Now if we put in the quadratic term in (1.14) we get  

 
             

    

2 2
0 0 00

0 0

1/2 /2 /

1/2
0

, ~ , 2

/

i k x t iq x v t liw q t l

i k x t

A x t A x t l e dq f q e e

l e F x v t l






  







 


 (1.17) 

where  F   is the Fourier transform of the modified amplitude function 

    
2 2

0 /iw q t lf q f q e   (1.18) 

 

The effect of this is as follows: 

 the phase function becomes 
  0 0i k x t t

e
  

;  it still represents a plane wave but there is an 

additional phase contribution coming from F . 

 The amplitude function diminishes in time and its width increases – wave-packet spreading – 

but it still moves with speed 0v . 

 

These statements can be checked analytically for a Gaussian wave-packet (see Appendix A  ). In 

particular, the modified x-width has the form [1] 

   
1/22 2 2 2

04 /l t l w t l    
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In summary: 

 If   is independent of k , the wave-packet doesn’t move at all; 

 If   is linear in k  (as per light), the wave-packet moves with the usual group velocity and 

maintains a constant width; 

 If   is non-linear in k  (as per electrons - see section 2.1), the wave-packet moves with the 

usual group velocity and spreads out as t  increases away from 0 (in either direction). 

 

 

 

 

 

 

 

 

 

 

 

 

2 Quantum wave-packets 

2.1 The time-dependent Schrödinger equation 
The time-dependent Schrödinger equation (TDSE) governing the evolution of a wave function 

 ,x t  is 

 i
t








 (2.1) 

For free particles the Hamiltonian contains only kinetic energy and we have 

 
2

2

1

2
i

t x

  
 

 
 (2.2) 

We know that the solutions of (2.2) are plane waves: 

    , i kx t

k x t Ne 



  (2.3) 

where 

Note 2: Stationary phase 

This motion of the wave-packet (ie of the maximum in the amplitude function) can be obtained 

directly from (1.4) using the stationary phase idea [3].  If  is peaked around  then the 

maximum value of the integral will be reached when, in the region around , the phase in the 

exponential varies slowly.  So maxima are associated with points where the phase is stationary: 

 

In this way we predict the maximum amplitude to be at . 
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   21

2
k k    (2.4) 

 Compare (2.3) and (2.4) with the classical analogues (1.2) and (1.3).  The only difference is in the 

dispersion laws  k  and  k : the classical dispersion is linear in k  because its wave equation 

contains the second partial derivative in time, while the quantum dispersion is quadratic in k
because the TDSE contains the first partial derivative in time.  However, both the classical wave 

equation and the TDSE are linear and so, following section 1.2, we can construct a free particle 

quantum wave-packet 

         1/2
, 2

i kx k t
x t dka k e


 

 


   (2.5) 

This linear combination is clearly a solution of the TDSE, which in turn means that all the properties 

of classical wave-packets described in section 1.2 also apply to the free particle quantum wave-

packet.  In particular, we see that since  k is certainly not linear in k  the wave-packet spreading 

described in 1.2 is an inherent phenomenon for free particle quantum wave-packets.  Indeed, as 

shown in section 3.2, it is a very strong effect. 

 

More generally, we consider motion under a Hamiltonian  x .  The Hamiltonian can depend on 

time (the most interesting cases really: forced dynamics) but here we suppose that it is time-

independent and therefore has energy eigenfunctions and eigenvalues  q x  and q : 

      q q qx x x    (2.6) 

The label q  stands for all the quantum numbers needed to specify an energy eigenvalue, discrete or 

continuous.  When we integrate over q , we mean integrate over the continuous spectrum and/or 

sum over the discrete spectrum [3], [4]. 

We can now make an immediate generalisation of (2.5) and write the canonical form of a wave-

packet for a system with a time-independent Hamiltonian: 

Note 3: 

Right at the outset there is an important point here about normalisation.  A plane wave is not 

itself normalisable – hence the subtleties of normalising stationary states in a continuous 

spectrum (see [2], [3], [4]).  In this sense, they can’t represent physically realisable states.  A 

wave-packet such as that given by (2.5), however, is certainly normalisable: 

 

There’s no problem about choosing envelope functions such that .  Thus wave-

packets like this can be taken to describe realisable states of electrons 
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        
1/2

, 2 qi t

qx t dqa q x e


  
 


   (2.7) 

 

2.2 Density and current 
Consider a wave packet of the following form (compare (1.8): 

              0 0 0 01/2 //, 2
i k x k t i k q l k tiqx lx t e l dq f q e e

  
 

   


   (2.8) 

  The corresponding density is 

 

   

          0 0

2

/ //

, ,

1

2

i p l k p l k ti q q x l

x t x t

dq dq f q f q e e
l

 

 



   



   
 (2.9) 

Let’s evaluate this using the expansion (1.14), replacing the classical frequency  k  by the 

quantum eigenvalue  k  of course, stopping at the linear term: 

 
          0 /1 1

,
2

i q q x v t l
x t dq dq f q f q e

l




       (2.10) 

Thus we can write, using (1.10), 

 
      

21 1
0, /x t l F x v t l    (2.11) 

in agreement with (1.16).  For the Gaussian wave packet defined by (1.6) or (1.7) we find the explicit 

form 

      
2 2

0 /1 1,
x v t l

x t l e
   (2.12) 

The current associated with a wave function  ,x t  is  

 

   
 

 
 

 
 

, ,1
, , ,

2

,
,

x t x t
j x t x t x t

i x x

x t
x t

x

 
 










   
  

   

 
  

 
Im

 (2.13) 

Evaluating this using (1.14) and stopping at the linear term again, we find 

          
21 11

0 0 0, [ ] / ,j x t k l F x v t l k x t    (2.14) 

Now if   and j  are calculated from a wave function that is an exact solution of the Schrödinger 

equation, then (see [3], [4]) they must satisfy the continuity equation 

 
   , ,

0
x t j x t

t x

 
 

 
 (2.15) 
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But if one calculates the density and current from an approximate wave function, then the 

continuity equation is not automatically satisfied (and charge may not be conserved).  Indeed, for 

the Gaussian wave packet, the linear approximations (2.12) and (2.14) yield 

 

   

 

   

2 2
0

2 2
0

1
/0

03

1
/0

03

2

2

x v t l

x v t l

v
x v t e

t l

kj
x v t e

x l

  

 


 




  



 

In general, of course,
 

0

0 0

k

d k
k

dk


 v  and so continuity is violated.   

 

 

3 Wave-packet dynamics in free space 
Section 2 describes essentially all the theory needed to discuss the motion of wave-packets in free 

space (at least those constructed from plane waves – which could be one definition of free space 

here).  But to make it all real, here are some results of a numerical evaluation of the dynamical 

equation (2.5).  For details of the calculations see [5].  

The amplitude function in (2.5) was taken to be a Gaussian of k-width 1l  peaked at 0k k : 

   
2 2

0 /2k k l
a k e

 
  

The energy vs k dispersion relation was taken to be a 2nd order polynomial: 

  2k k k     

The group velocity and width functions appearing in the Taylor expansion of  k  about 0k  and 

defined in (1.15) are thus 

   

0 0

2

0 0 0 2

1
2 ,

2
k k

d k d k
k

dk dk

 
      v w  

Of course, for proper plane waves, we should take 0, 1   .  But it’s useful for exhibiting the 

wave-packet spreading phenomenon to give ourselves more freedom in the dispersion relation.  For 

all the calculations in this section, we’ll choose a dispersion relation such that the group velocity is 

equal to 2. 

 

3.1 Motion 
The following figure shows the simple motion of a wave-packet in time using a linear dispersion 

relation. 
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The wave-packet just moves from left to right with a speed of 2 and maintains its shape and length 

as it moves. 

 

3.2 Wave-packet spreading 
This picture shows exactly the same calculation but with a polynomial dispersion relation.  

 

Again, the wave-packet moves from left to right with a speed of 2 but now its shape spreads out 

quite dramatically as time increases away from 0t  .  This effect is even more pronounced if we use 

a pure quadratic dispersion relation: 
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Note that at 0t  , the wave-packet is independent of the dispersion relation. 

 

 

4 Scattering of wave-packets in 1   
In an illuminating calculation, Cohen-Tannoudji et al [3] treat the scattering of a wave-packet by a 

potential step.  Their method is really a general one for describing wave-packet dynamics in a static 

potential.  First, you solve for the stationary states of the static potential and construct a wave-

packet 

        
1/2

, 2 ki t
kx t dkg k x e   

    (4.1) 

involving the wave functions  k x and eigenvalues k of the stationary states and an envelope 

function which confers the required properties on the wave-packet (eg moving to the right with a 

certain speed, whatever) – compare the general wave-packet form (2.7).  The stationary states will 

generally be a continuum (or nearly so), but certainly don’t need to be plane waves.  Indeed, in the 

case of scattering by a potential step the stationary states are the full solutions as worked out in 

Landau & Lifshitz [2] and every other quantum mechanics book by matching plane wave solutions 

with different wave vector on either side of the step.  Then, to see the dynamics you just let the 

above wave-packet evolve in time, ie just evaluate it at different times.  You don’t have to solve the 

time-dependent Schrödinger equation because the wave-packet is automatically such a solution.  

In this way, Cohen-Tannoudji et al start off their wave-packet at some negative x moving towards 

the step at the origin.  When the wave-packet reaches the step its structure becomes complex, with 

interferences all over the place, but after more time elapses it evolves into a reflected wave-packet 

(and a transmitted wave-packet if its energy is above the step).  Interesting things like time-delays in 

the scattering can be analysed in this way.  It’s rather magical – all this complex dynamics is 

embedded in the stationary states, and it emerges via the wave-packet equation (4.1). 
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Cohen-Tannoudji et al actually produce their analysis by using the stationary phase method to 

estimate the location of the wave-packet maximum as a function of time.  They get a long way by 

this means, but it’s irresistible to do a numerical evaluation like that of section 3 for this square 

barrier problem.  Again, this makes it all real and it also provides a fully time-dependent description 

of a very simple but not completely trivial scattering problem.  

We start this by recalling the standard theory of the stationary states for the square barrier potential 

in 1 .  

 

4.1 The time-independent scattering problem 
The potential looks like this: 

 

The height of the barrier at 0x   is 0u - we sometimes write this as 0 0u  .  We want to find the 

stationary state wave-function corresponding to a given energy.  As in all the textbooks (see [2], [3]), 

we write this in terms of plane waves: 

        1 ( ) ( )ikx ikx ikx
k x x e A k e x B k e       (4.2) 

with 

 
2 2

0 0

k

k u k



 



   
 (4.3) 

The first term in (4.2) is valid for 0x  , the second for 0x  .  Since we want to describe a wave 

incident on the barrier from the left, we have omitted a right-to-left travelling component in the 

region 0x  .  We also choose to normalise the state such that the coefficient of the left-to-right 

travelling (incident) wave in region 0x   is 1.  As an aside (almost), note that the formula for k , the 

wave-vector in the region 0x  , has a branch point at 0u   in the complex  plane.  Since k  can 

certainly be imaginary, it’s necessary to make sure in a real calculation that it stays on the correct 

sheet.  This is what it should look like: 

U(x) 

x=0 x 

u0 
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The standard calculation to match the two pieces of the wave-function smoothly across 0x   gives 

these results for the scattering amplitudes: 

 
 

 
2

k k
A k

k k
k

B k
k k









 (4.4) 

For obvious reasons, the coefficient A  represents the amplitude for reflection and B  that for 

transmission.  Note that  

   1 A k B k   

Clearly the imaginary parts of A  and B  are the same.  Numerical evaluations of the scattering 

amplitudes are given below: 
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These pictures demonstrate that for energies below the barrier, the amplitudes are complex.  This 

implies that for 0u  reflection is accompanied by a phase shift related to the phase of A .  The 

next picture gives the modulus and phase of A  (with a little care taken to remove jumps of  in the 

phase, corresponding to zeroes of the real part of A ): 

 

This phase shift produces a time-delay of the reflected wave, as we shall see in section 4.2.1.   

Finally we show two calculations of the full wave-function in (4.2), first for an energy below the 

barrier: 
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and second for an energy above the barrier: 

 

Clearly these functions are smoothly continuous at 0x  , and show the expected characteristics.  

We now use these wave-functions to construct a wave-packet with which to see the dynamics of 

scattering explicitly in time. 

 

4.2 Wave-packet dynamics 
We can now use the stationary states just discussed to build a wave-packet whose motion we want 

to follow.  The wave-packet is given by equation (4.1) in which we insert the wave-functions given by 

(4.2).  The quadrature in (4.1) is carried out by just the same methods as in section 3 – see [6] for 

details.  Note that the wave-packet is constructed so as to arrive at the barrier at 0t  . 
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4.2.1 Total reflection 

We first consider the case where
0

2 2
0 0k u  . Here we expect no significant transmission into the 

region 0x  .   The figure below shows results for a wave-packet with a linear dispersion law. 

 

Reflection does indeed happen!  When 0t  , the wave-packet moves from left to right.  As it 

approaches the barrier, it becomes compressed (because it cannot penetrate far into the region

0x  .  It is then reflected – for times 0t   it moves from right to left – but the reflected wave is 

suffers a time delay manifested in the above figure by the observation that the peak of the wave-

packet at timet  occurs at a position displaced by a distance 0 Wv   from its position at time t  on 

the inward journey.  This confirms the expectation outlined in section 4.1 above.  To see this, write 

the reflected wave-packet as follows: 

       

      

, k

k

i kx t

R

i kx t k

x t dkg k A k e

dkg k A k e



 


 

  








 

where we’ve separated the reflection amplitude into its modulus and phase  k .  The stationary 

phase condition is thus 

    
0

0
k

d
kx k t k

dk
     

which we can write as follows: 

 0 Wx v t     

with 
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 

   
0

0 0

0

/

k

W

k k

d k
v

dk

d k d k

dk dk



 






 

The following figure shows the time-delay corresponding to the above calculations of the reflection 

amplitude.  

 

How does all this actually work in the k-quadrature (4.1)?  Clearly, for times 0t   the reflected and 

transmitted components of the wave-functions for different wave-vectors cancel out while the 

incident wave components add up constructively within a certain range of x , just as they do for 

wave-packets in free space.  For times 0t  , on the other hand, the situation is the reverse: the 

incident components cancel out while the reflected components add up constructively.  This is basis 

of the stationary phase argument. 

The following figure shows the same calculations, but now using a polynomial dispersion law.  The 

story is the same, but now wave-packet spreading takes place within the scattering process.  
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We mention one final detail here.  There is no observable weight in the above figures in the 

classically forbidden region 0x  , at least for positions beyond the region of exponential decay of 

the wave-functions.  However, if one looks carefully at the calculations, there is a tiny piece of wave-

packet that is transmitted into the forbidden region.  This corresponds to components of the wave-

packet in (4.1) that have 0k   - that is, energies above the barrier.  These occur because we are 

relying on the Gaussian amplitude function in (4.1) to cut off the k-integral.  Cohen-Tannoudji et al 

[3] actually force the upper limit of this integral to be 0  because any k-components greater than 

this would corrupt their argument based on the stationary phase method.  Similarly, when looking at 

the partial reflection/transmission case discussed below, Cohen-Tannoudji et al force the lower limit 

of the integral to be 0 .  However, since we are analysing these cases by a full numerical evaluation 

not reliant on stationary phase arguments, we don’t need to make these restrictions, which seem 

unnecessary from a general point of view.  

 

4.2.2 Partial reflection-transmission 

Now we consider the case where
0

2 2
0 0k u  .  Here we do expect transmission into the region

0x  , along with the specifically quantum effect of some reflection back into the region 0x  .   The 

figure below shows results for a wave-packet with a linear dispersion law. 

 

In this quite complicated picture, we see all of these phenomena.  It’s a little clearer if we take the 

figure apart and discuss it piece by piece.  Below we show the motion of the wave-packet for 0t  . 



20 

 

 

This shows the expected movement towards the barrier, in whose vicinity the shape of the wave-

packet becomes complicated by interference between the incident and reflected components.  

The following figure shows the motion for 0t  .  

 

Here we see the transmitted wave-packet – it looks like it’s spreading, even for this linear dispersion 

case, but this is really only a “relaxation” of the compression that occurs near the barrier.  The 

transmitted wave travels more slowly than the incident wave, because its wave-vector is k , not k .  

In fact, if one goes through the stationary phase calculation for the transmitted wave-packet, one 
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finds that the position of its peak is given by 0

k
x v t

k
 .  For the parameters of the calculation 

depicted above, 0

5
2 1.5

3

k
v

k
 .  The picture above shows that the transmitted wave-packet is 

indeed moving at this speed. 

 

Notice also that there is some weight in the region 0x  .  This is made more clearly visible below, 

where the scale is blown up.  

 

 

We can see the reflected wave-packet moving beautifully from right to left with just the right speed 

and with no phase-shift (compare the discussion in section 4.2.1).  This is because the reflection 

amplitude  A k  is purely real for 0k   (see the figures in section 4.1). 

Finally, we note that in the limit 0 0u   the numerical results of this section should agree exactly 

with those of section 3 on free-space propagation, and they do (once all the complications of staying 

on the right Riemann sheet are sorted out). 

 

 

5 A general theory of wave-packet scattering 
Consider a plane wave incident on a cluster, by which we mean anything from a single atom to a 

crystal.  By the method of section 4 we can give a full time-dependent description of the scattering 

process in a cluster if we know its energy eigenstates.  Since we’re dealing with continuum states, as 

in section 4, the thing to do is to use the Lipmann-Schwinger equation for these energy eigenstates.  

In the language of multiple scattering theory [7], this reads 
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     

   

0

0

, , ; ,

, ; ,

i i

i ij i

ij

e d d G T e

e d d G e

  

 

 



     

     

 

 

k.r k.r
k

k.r k.r

r r r r r r r

r r r r r r
 (5.1) 

A complete calculation requires these solutions (or, equivalently, the Green’s function) in all regions 

of space, and multiple scattering theory provides this.  Here we simply note that in regions far 

outside the cluster things are easier because the solutions are determined by the scattering 

amplitude alone.   

 

The scattering amplitude of any object is defined by the asymptotic form of the wave function at 

distances large compared with the size of the cluster and therefore far away from any scattering 

potential.  In general this asymptotic form is 

      lim , ,
ikr

i scat i

r

e
e e f

r
    


   k.r k.r

k kr r k  (5.2) 

Here 
20 0i k i        

To determine the scattering amplitude  f k  we will use the geometry depicted above and write the 

total wave function = incident wave plus scattered wave by means of the Lipmann-Schwinger 

equation (5.1).  Expressing this in terms of the on-shell matrix elements of 
ij  allows us to write 

 

            

         

1 1 2 2

1 2

1 1 2 2

1 2

ˆˆ4

ˆˆ4

l l ij
L L LL i L L L L j

ij LL L L

l l ij
L L LL i L L L L j

ij LL L L

f i Y Y d d

i Y Y d d

 

 

 

 



 

 



   

  

 

 

k r k R R

r k R R
 (5.3) 

where the real space structure constants  LLd  R  occur.  The single scatterer result  SSf k  is 

obtained by letting  
1 2 1 1 2

ij
L L L L L ijt    , 0i R   and noting that  

0
lim LL LL
R

d  


R .  Thus we easily find 

the familiar result (see, for example, Schiff [8]).  
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r r R

r r

ij i j
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       

       

ˆˆ2 1

1 ˆˆ2 1 sin l

SS
l l

l

i k

l l
l

f l t k P

l k e P
k



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 





k r.k

r.k
 (5.4) 

Following the argument of section 4.2.1, we can easily see from (5.4) that the Wigner delay time 

associated with the scattering of a partial wave of angular momentum l  by a single atom is 

proportional to 
 ld k

dk


. 
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Appendix A   Gaussian wave-packets 

Here are some useful results for Gaussians, for reference.  Note that the following are special cases 

of the general formula [1] 

 

2

2
1/2

4

a
ax bx bdx e e e

b






 
  
 

   (A1) 

A.1. Normalisation Integral 

The key result is  

 
2 21/2 /22 x ldx e l

 


   (A2)

  

From this we can easily show that if 

 
2 2

1/2

/21
, x lg x l e

l 

 
  
 

  (A3)

  

then 

  
2

, 1dx g x l



  

Thus  ,g x l  is the normalised Gaussian of width l . 

 

A.2. Fourier Transforms 

The key result is 

 
2 2 2 21/2 /2 /22 x l ikx k ldx e e l e

  


          (A4)

   

From this all required Fourier transforms (and the results above) can be derived. 

 

 

 

 

 


