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Abstract 

These notes describe a general photoemission process from the semi-classical viewpoint: under the 

influence of an external electromagnetic field, a photoelectron is excited and detected externally. 

Using the evolution operator, the time-dependence of the field can be described – pulsed excitations 

and so on – and there is no restriction to Golden-Rule-type steady state situations.  The detection 

process involves a measurement of the energy, propagation direction and spin of the photoelectron, 

and is encapsulated in a set of suitably defined operators.  The polarisation state of the 

electromagnetic field is described by the classical polarisation tensor and the spin state of the 

photoelectron is compactly described by its spin density matrix. 

The central result of this analysis is the identification of a “transition probability matrix” which 

determines the spectral weight of all possible light-excited electronic transitions.  The experimental 

parameters of the particular measurement performed determine which components of the 

transition probability matrix contribute to the spectrum.  These notes show how this works in 

general, and give examples of spin-polarisation and dichroism in photoemission.  The special role of 

spin-orbit coupling in the electron states is noted.  
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1 Pre-amble 
The motivation for this formulation of the calculation of photoemission spectra comes from the 

many experimental developments that have been made since the original angle-resolved 

measurements.  These include 

 electron spin-resolution; 

 exploitation of photon polarisation to observe various types of dichroism; 

 the potential use of sub-femtosecond (even attosecond) pulses in pump-probe experiments to 

observe the evolution or dynamical response of electron systems directly in the time domain.  

These notes show how to incorporate these aspects into photoemission calculations at the 1-

electron level.   

In this semi-classical version of the formulation, the electromagnetic field is treated as a classical 

time-dependent external field acting on the electrons.  It is not hard to modify the formulation to 

include a fully quantised photon field, and this may become an interesting point in condensed 

matter physics as (free-electron) laser excitation becomes more available.  

A further key point is that this formulation is a 1-electron theory; the interaction between electrons 

is smuggled into an effective self-consistent field potential via some approximation such as density 

functional theory.  Sometimes many-electron excitation effects are included phenomenologically by 

means of a complex self-energy (or simply by using solutions of the 1-electron Schrödinger equation 

for complex energies).  At all events, our approach here is to treat the electrons as moving 

independently in an effective 1-electron potential.  Experience shows that this is a surprisingly 

accurate and physically illuminating thing to do. 

 

2 The geometry of the system 
We consider an electron system (atom, molecule, crystal) in an external electromagnetic field whose 

polarisation state will be specified by classical polarisation tensor involving the Stokes Parameters – 

see section 4.  We use a set of Cartesian axes (plus the related polar coordinates) to describe 

electron positions – this set is arbitrary but for an atom in a crystal we’d take them to be the natural 

crystal-fixed axes.  The direction of the incident photon and its polarisation basis unit vectors  e  

are also given with respect to these Cartesian axes. Since this is a photoemission problem, we’ll take 

the crystal to occupy the 0z  half-space; the positive z-axis is therefore the outward-pointing 

surface normal. 
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3 Basics 

3.1 Hamiltonian 
The Hamiltonian is 

  0 t    (3.1) 

Here 0 is the non-interacting Hamiltonian and  t  is the electron-field interaction. 

 

The Electronic Hamiltonian 

 The non-interacting Hamiltonian for the electron is 

 0 i i i
i

E     (3.2) 

where i  is a composite symbol describing all the electron orbital/spatial and spin degrees of 

freedom of the electron.  Let’s be more precise about this.  Clearly i is an energy eigenket 

corresponding to energy eigenvalue iE , which may be degenerate.  Moreover, the spectrum of 

energy eigenvalues will in general have a discrete part, at low energies, corresponding to the bound 

states of the system, and a continuous part, above a certain energy threshold, corresponding to the 

unbound states.  These unbound states can be naturally represented as scattering states – solutions 

of the Lipmann-Schwinger equation [1] – and they are (partly) characterised by a continuous energy 

variable. In this situation it’s useful to invent a good notation with which to expand the “composite” 

index i in (3.2).   

For example, if the system is an atom without spin-orbit coupling the spherical symmetry suggests 

using a complete set of commuting observables - CSCO [1], [2] consisting of the Hamiltonian, the 

orbital angular momentum l  (actually 2l ), its z-component zl , the electron spin angular momentum 

s  and the z-component of the spin zs  .  The natural labelling of the bound state energy eigenkets is 

thus 

 
, , ,

, , ,

l s

i l s

i n l m m

n l m m

E E

 


  (3.3) 

Here, as we know, n is the so-called principal quantum number (equal to 1 + the number of nodes in 

the radial wave function), and , ,s sl m m are the eigenvalues of , ,z zl l s respectively1.  The spherical 

symmetry of the atomic potential ensures that the energy eigenvalue does not depend on lm or sm

and is therefore  2 2 1l  -fold degenerate (the first factor of 2 corresponding to spin).  Similarly, the 

natural labelling of the continuum states is 

 
, , ,i l s

i

l m m

E

 






  (3.4) 

                                                           
1 No need to specify the eigenvalue of s ; it’s always ½. 
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In the presence of spin-orbit coupling, , ,l sl m m  have to be replaced in this labelling scheme by j  and 

jm  (the eigenvalues of j and zj respectively) where  j l s .  We’ll return to this point in section 3.2.   

For systems which are molecules, clusters, solids etc. the symmetries, if any, and therefore the 

natural components of the CSCO, are obviously more complicated, but the principles are the same.  

So let’s introduce the following general notation.   

 
0 n, n,

0

: n, n, 0

: , , 0

Q QBound states Q E Q E

Continuum states Q Q   

 

 
  (3.5) 

Here we have used the composite index Q to represent all parts of the CSCO other than the 

Hamiltonian – for an atom , ,l sQ l m m , and so on.  We also took the zero of energy to be the 

continuum threshold. 

This set of eigenkets has the following properties: 

 

Orthonormality: 

 

 

n,Q n ,Q

n,Q ,Q 0

,Q ,Q

nn QQ

QQ

 



     

 



  

 

   

  (3.6) 

Completeness: 

 
0

n, n, , ,
Q n

Q Q d Q Q  
 

 
 

     (3.7) 

 

The Interaction with the Field 

In this section, all the interactions are given in the Schrödinger picture, denoted [S].  In the dipole 

approximation, we can write the electron-field interaction in the form [2], [3] 

                S , , ,t t e t t  
  q E q . E q .r d   (3.8) 

Here r is the electron position operator, the dipole operator is simply e d r , and    ,tE q is the 

electric field corresponding to a wave propagating with wave-vector q  in a general polarisation state 

denoted by a unit vector    e q .  We can express this as a linear combination of the polarisation 

basis vectors     qe defined in Appendix A   

 

           

                 

         

2

1

2

1

, ,

,

a

t t a t

t t

  



   



 











 







e q e q

E q e q E q

E q e q

 (3.9) 
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What is the time-dependence of the field?  We can leave it in the completely general form (3.9) for 

almost all of this calculation, apart from the harmless requirement (see section 5.1) that 

  0, 0t t  .  However, we do have two important special cases in mind: 

1. Periodic field of frequency  :    0
i tt e    

2. Pulsed field “of frequency ”:    0
i tt t e  , in which a periodic variation is multiplied by an 

envelope function  0 t which we imagine to be peaked at some time 0t and of duration  .  For 

example, the envelope function could be a Gaussian:  
2 2

0( ) /
0

t tt e  
.  The intension of the quotes 

above is to remind us that clearly  t now has more than one frequency component.  

Thus the interaction becomes 

 

           

          

, ,

,

t a t

t t

  



 





q q

q e q .d
  (3.10) 

 

3.2 Basis kets 
The most elementary degrees of freedom one can use to describe an electron are momentum and 

spin, and these are natural observables to use to classify the photoelectron states.  The associated 

state kets are the eigenkets  k  of the momentum operator p   and the eigenkets  sm  of the zs  

operator.  The entire electron state space is thus spanned by the tensor product kets  , smk : 

 , s sm m k k   (3.11) 

such that 

 
, ,

, ,

s s

z s s s

m m

m m m





k k k

k k

p

s
  (3.12) 

The orthonormality and completeness rules for these kets are obviously 

 
 , ,

, ,

s s

s

s s m m

s s
m

m m

d m m

  
   



k k k k

k k k
  (3.13) 

To describe processes involving atomic-like core states, we will also need to use the eigenkets of 0 , 

ie , , ,n Q Q , described above, as a basis.  In the absence of spin-orbit coupling Q can be taken to 

include sm , the eigenvalue of zs , as in the “uncoupled” representation of (3.3) and (3.4).  But in 

general zs does not commute with 0 and cannot be part of a CSCO involving 0 .  Indeed, for the 

spherical atom example outlined above we have energy eigenkets of the following form: 

 
 

, ,

, ,

n j

j

n Q j m

Q j m



  

 

 
  (3.14) 
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in which n or      represents the radial component of the position degree of freedom.  Now 

we know that we can write , , , ,j jj m l s j m in terms of an uncoupled kets , , , ,l s l sm m l s m m  

as follows: 

 
,

, , , ,
l s

j l s l s j
m m

j m m m m m j m    (3.15) 

where the quantities , , , , , ,l s j l s jm m j m l s m m j m  are the Clebsch-Gordan coefficients [4].  

Thus, we can write the energy eigenkets as a linear combination of uncoupled states: 

 
, ,

, ,

, , , , , , , ,

, , , , , , , ,

l s l s

l s l s

l s l s j l s l s j
m m m m

l s l s j l s l s j
m m m m

n Q n m m m m j m n m m m m j m

Q m m m m j m m m m m j m  

  

  

 

 
  (3.16) 

Remember, the uncoupled states are not themselves eigenkets of 0  but only to be used in 

expanding the energy eigenkets corresponding to eigenvalue   as in (3.16).  But they are eigenkets 

of ˆ
zs , unlike the energy eigenkets.  And they follow the orthonormality and completeness rules (3.6) 

and (3.7) with  , , , , , , ,l s l sn Q n m m Q m m   .  

 

4 The external field - classical polarisation tensor 
Suppose that the external electric field takes the form of an ensemble of pure polarisation states   

described by vectors    tE  defined by (3.9) with components along the basis polarisation 

directions given by 

                  e,E t t t a   

  E q . q   (4.1) 

and form a matrix J  [5] 

                      t E t E t p E t E t   

   



 

 
     J   (4.2) 

Here  p   is the ensemble probability of polarisation   and so the matrix consists of averages of 

bilinear products of the field amplitudes.  The total average intensity is given by 

            
2 2

1 2totJ t E t E t Tr t 
     J   (4.3) 

We can thus define a matrix  pol
π  

    
 

 
   pol pol

tot

J t
t t

J t










   
 
π π   (4.4) 
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From (4.2), this matrix is Hermitian and normalised:   1polTr   
 
π  for any time; it is the classical 

polarisation tensor2 of the field [5].  Using (4.1) in (4.2), we can see that  

              2J t t p a a 




  


     

and because        
2

1

1a a 



 




  and   1p


   we also have 

    2
totJ t t   

Thus the polarisation tensor for this field is independent of time: 

            pol p a a 




  




  
  π   (4.5) 

Since  pol
π  is a 2x2 Hermitian matrix with unit trace, it can be written in terms of the Pauli matrices 

 1 2 3, ,  and a set of 3 real parameters  1 2 3, ,  ξ  in the familiar way [7]: 

    
1

2

pol
  .π ξ   (4.6) 

Written out explicitly in terms of the 3 real Stokes parameters  1 2 3, ,   this becomes 

   3 1 2

1 2 3

11

12

pol i

i

  

  

  
  

  
π   (4.7) 

Clearly we can write the tensor for a general, ie mixed, state of polarisation, given by (4.5), as 

follows: 

                ,p a a 




    



    π π π

ξ
 (4.8) 

Here  π  is the tensor for a single, pure, state of polarisation, specified by a (complex) unit vector 

   e q which is a linear combination of the orthonormal basis vectors    1 2,e e as in (3.9) 

As we can see from Appendix A  equation (A.7), the most general (normalised) form for the 

coefficients is given in terms of two angles ,  : 

        1 2cos , sin ia a e       (4.9) 

It’s easy to work out from (4.8) that the general form for the pure polarisation tensor is 

  
2

2

cos sin cos

sin cos sin

i

i

e

e





  


  

 
  
 

π  (4.10) 

                                                           
2 The counterpart of the polarisation tensor in a treatment in which the field is quantised is, naturally, the 
photon polarisation density matrix [6].  In fact, expressed in terms of the Stokes parameters, the two 
quantities are identical. 
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From this it’s clear not only that   1tr    π , but also that     
2

 π π and thus 

  
2

1tr   
 
π .  It’s clear that the properties of these classical polarisation tensors are identical 

with those of 2x2 quantum mechanical density matrices for pure and mixed states. 

Moreover, comparing (4.7) with (4.10) we see that the Stokes parameters for a pure polarisation 

state   are 

 
1

2

3

sin2 cos

sin2 sin

cos2

  

  

 



 



 (4.11) 

 Here are a few special cases: 

 0ξ  corresponds to a completely unpolarised state for which   1

2

unpol
π  (any setting of a 

polarisation detector will transmit half of the light); 

 1ξ  corresponds to a pure polarisation state; 

 In photoemission lingo, and using our definitions of the basis vectors, s-polarisation corresponds to 

 0,0,1ξ  and p-polarisation corresponds to  0,0, 1 ξ .  Also, right-hand and left-hand circular 

polarisation correspond to  0, 1,0 ξ  and  0,1,0ξ  respectively (see Appendix A  ).  The 

corresponding polarisation tensors are 

 

   

   

1 0 0 0

0 0 0 1

1 11 1

1 12 2

s pol p pol

RHC LHCi i

i i

    
    
   

   
    

   

π π

π π

 (4.12) 

 

5 Time evolution 

5.1 The initial state 
“Initial” means 0t  ; we’ll assume (without loss of generality, I think) that the interaction (ie the 

external field) is zero for 0t  .  

We take the state of the electron at 0t   to be  0 , an energy eigenstate 

    0 00 0E     

Here we assume that  0 is a bound state in the sense that the wave function  0r  is zero 

at large distances outside the system.  Note that this holds even if the system is large, eg a crystal – 

in the present context “bound” means spatially confined to the system and “continuum” means able 

to escape from the system (to infinity).  For example,  0  could be an atomic-like core level, or a 

molecular orbital, or a delocalised band state in a crystal.  If we take the initial state to be the nth 

bound state, then according to (3.16) we can write 
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,

0 , , , ,
l s

l s l s j
m m

n m m m m j m     (5.1) 

 

5.2 The state at time t 
It’s best to use the interaction picture (denoted by [I]) to describe time evolution (see, for example, 

[1]).  In the interaction picture, the time-dependent interaction operator (3.8) becomes 

        I S0 0i t i tt e t e
  (5.2) 

Thus, we write (3.8) 

              0 0, ,i t i tt t e e t t  
 E q . E q .d d  (5.3) 

Here    t and  td are in [I].  From (4.1), we have 

                      ; ,t a t t t t    



  E q .d  (5.4) 

At time 0t  , the system will have evolved into state 

              0, 0 0 0t t t t 
     U U   (5.5) 

making use of some loose but obvious notational simplifications for the evolution operator: 

     0, 0t t t
 U U .  We attach the polarisation index   to the evolution operator and state ket 

because the former satisfies 

           ,
d

i t t t
dt

  
 qU U  

Thus 

 

           

     

0

0

,

,

t

t

t i dt t t

i dt t terms of higher order in

  



   

   





q

q

U U
  (5.6) 

In these notes there’s no need to go beyond the 1st order approximation in (5.6).  Moreover, 

because  0 cannot contribute to an externally observed photocurrent, by definition, we are not 

going to be concerned with the component of the evolving ket    t
  which remains along 

 0  , only with the rest of    t
 .  So it’s convenient, at least for these work-everything-out-

in-excruciating-detail notes, to invent some more notation.  First, define a “transition” component 
   t

  by 

          0t t 
      (5.7) 
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Note that although the unitarity of the evolution operator guarantees that    t
 remains 

normalised (assuming that  0 is normalised),    t
 is not normalised.  Later we’ll calculate 

       t t 
  . 

Clearly           1 0t t 
    , where      0 0 0   is the projector on to  0 .  

Then if we define the transition component of the evolution operator by  

        t t 
 uU   (5.8) 

then clearly 

          0t t 
  u   (5.9) 

Now, using (3.10), (5.4) and (5.6), we can write 

            t a t  



u u   (5.10) 

where 

        
0

,
t

t i dt t     qu   (5.11) 

with   given by (5.4).  Thus, we can write (5.9) as 

 

           

              e

2

1

0
0

t

t a t

t i dt t t

  



 

  







    



 q .d
 (5.12) 

Finally, we note the obvious but very important point that the evolution operators described here do 

not act on the electron spins because the electron-photon interaction does not involve spin. 

The ket (5.12) represents the solution of the photoemission problem.     t
  contains all relevant 

dependence on the polarisation (and wave vector) of the incident light, and all information about 

the direction, energy and spin of the photo-emitted electrons.  The character of the initial state – 

usually the main object of interest – is, of course, contained in the initial ket  0 , whose 

calculation is the electronic structure part of the problem. 

 

5.3 The transition amplitudes 

This information is extracted from    t
 by measuring the available observables in the state it 

represents.  This is expressed compactly in the form of transition amplitudes  

              , , 0 ,mm t m t u t  
   k k ku  (5.13) 

 This is clearly the amplitude to find the photoelectron in state ,mk , but we will develop the idea 

of “finding” the photoelectron properly in the next section.  Note that, from (5.12) 



12 

 

            
2

1

, ,m mu t a u t  






k k  (5.14) 

Note that the norm of    t
 can be expressed in terms of the transition amplitudes as follows: 

                    
2

, , ,m
m m

t t dk t m m t dk u t    
      k k k  (5.15) 

How to calculate the transition amplitudes?  Start from (5.13) and (5.11) 

 

                   

         
0

, , 0 , 0

, , 0

m

t

u t m t a m t

i dt a m t

   



 







   

   





k k k

k q

u u
 (5.16) 

Here we see the electron-photon matrix elements we expect to find in the theory.  In Appendix B  

we found an expression (B.7) for the interaction   in real space, expanded in spherical harmonics.  

This is clearly useful when the initial state  0  is atomic-like, perhaps a core state.  But many 

other forms of initial state can be expanded in spherical harmonics, as can the free photoelectron 

states ,mk  - see for example [1].  In any event, the nature of the calculation of the electron states 

depends on the system under consideration; that’s the electronic structure part of the problem.  We 

won’t pursue this here, where our focus is the general description of the photoemission process 

itself3.  For now, note that all the traditional selection rules for light-excited electronic transitions are 

clearly included in (5.16), and that spin does not appear in the interaction   . 

 

6 The process of photoelectron detection 
What is actually done when a spin-resolved photoemission spectrum is measured?  An idealised 

time-resolved experiment would have three stages: 

1. the photoelectrons hit a screen with a small aperture, which transmits a beam of electrons with a 

relatively well-defined solid angle of emission  ,  k k k , where k  is a unit vector in the direction 

of emission;  

2. this beam enters an energy analyser which in turn filters out all electrons except those with relatively 

well-defined energy   - by definition this energy lies in the continuous part of the electron energy 

eigenvalue spectrum (3.5), so that 0  ; 

3. the spin component, along some direction given by a unit vector n , of these filtered electrons is 

measured. 

These measurements all involve observables that commute with each other.  We assume that all 

these three processes occur at time t , or, more precisely, that the time lag between the stages of 

measurement is small enough to be neglected.  Note that stage 1 measures the polar angles of the 

                                                           
3 I hope to post another set of notes linking in more detail this general formulation with the electronic 

structure aspects of photoemission calculations. 
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electron momentum and stage 2 measures its magnitude, via 
21

2
  k ; thus all three components of 

momentum have been measured in a detector placed at some position R outside the crystal.  This 

sounds like it violates the uncertainty principle – after all, the aperture in stage 1 can be made 

arbitrarily small, in principle.  However, stage 1 only measures two components of the momentum; 

the third component is measured in stage 2, the energy analyser, which is essentially macroscopic in 

position space and presumably can’t be made arbitrarily small.  So all is well.   

As a matter of fact, it’s quite interesting to analyse the detection process from the space-time point 

of view à la Feynman [8].  But for our present purposes, it seems enough to regard stages 1 and 2 as 

amounting to a measurement of the full momentum  2ˆ, 2 k k k of the photoelectron. 

 

6.1 Measuring momentum 
Thus we can represent these stages by suitably defined operators in the following way.  First, we use 

the momemtum-spin basis  ,mk  defined in section 3.2 for the photoelectron ket space. Here, 

remember, k  is the momentum of the photoelectron and m is the eigenvalue of zs  (the spin 

operator along the crystal z-axis).  Stages 1 and 2 are then represented by the following projector [9] 

 

 
k k

k k
k k k

2sin , ,

, ,

k

k

k

k
m

s
m

d d dk k m m

d m m d

 

 

 

 
  

  

  
  

 

 

   

       

  

 
k k k k

k k k k

k k k

k k k k k k
  (6.1) 

The quantities , , k     represent the finite angle and radial resolution of the momentum 

measurement and their product defines what one might call the “resolution volume”   in 

momentum space (see Appendix C  .  In (6.1) we also introduced an obvious shorthand notation for 

the full integral.  s is the unit operator in spin space;  k is the extension of a k-space operator 

into the full momentum-spin product space [2]. 

Now before the measurement, the system is described by the time-evolved ket     t
 in (5.9).  

Following the measurement, according to the 5th postulate of quantum mechanics [2], the state of 

the system is described by the following normalised projection: 

    
     

         
,

t
t

t t





 




 


k
k

k
  (6.2) 

Some care has to be exercised in using this projector.  In Appendix C  we discuss the general issue of 

projectors in a continuous state space, and in particular, derive the following results for matrix 

elements between arbitrary kets: 

      , ,
m

m m        k k k k k  (6.3) 

Here the resolution volume   appears.  Note that (6.3) ensures that the projected ket    ,t
 k  

in (6.2) is indeed normalised. 
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Note that the total probability  ; ,totP t k  of exciting a photoelectron of momentum k  and any spin 

with light of polarisation   is just  

                    ; , , ,tot
m

P t t t t m m t   
     k k k k  (6.4) 

This probability is, of course, proportional to the resolution volume.  Let’s define the corresponding 

probability density, or, as we shall call it, spectral weight,  ; ,W t k  by  

    ; , ; ,totP t W t k k  (6.5) 

From (6.4) and using (5.13) and (5.14), we have 

 

         

                   
2

; , , ,

, , ,

m

m m m
m m

W t t m m t

u t a a u t u t

 

    



 

 
  





 



 

k k k

k k k



 (6.6) 

Now introducing the polarisation tensor  π  defined in (4.8), we obtain 

            ; , , ,m m
m

W t u t u t 

 


 





   k k kπ  

This is the first appearance of what we might call the transition probability matrix  ,tT k  

          , , ,m mmm
t u t u t

   


   T k k k  (6.7) 

Thus  

      ; , ,
mm

m

W t t


 


 





       k T kπ  (6.8) 

Here we have a nice separation between the possible transitions that light of any polarisation can 

excite, represented by  ,tT k , and the actual polarisation state of the light, represented by  π .  

The transition probability matrix contains all the information about all possible observations of the 

photoelectron, as we shall see.  It is a 4-dimensional matrix; therefore tracing over either the 

polarisation or spin indices produces a 2x2 matrix: 

 

    

    

2

1

1/2

1/2

:

:

mmmm

m

mm
m

Trace over polarisations Tr

Trace over spins Tr





 




 



  
 

  
 





T T

T T

 (6.9) 

Thus, we can write (6.8) as follows: 

                   ; , , ,
m

m mm

W t Tr t Tr Tr t
 

    
 k T k T kπ π  (6.10) 
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6.2 Measuring spin 
Suppose we have detected a photoelectron with momentum k by the kind of process described in 

section 6.1.  We can perform further measurements on this photoelectron - for example 

determining its spin.  The result of a measurement corresponding to an observable  will be given 

by taking the expectation value of in the ket    ,t
 k in (6.2): 

          
           

         
, , ,

t t
t t t

t t

 

 

 

 
 

 
 

k k
k k k

k
 (6.11) 

Appendix C  shows how to calculate matrix elements of the kind needed in (6.11)4.  Here we’ll see 

how this works when the observable  is a spin component. 

Photoelectron spin is measured by some kind of polarimeter (a Mott detector, or suchlike), which 

can be thought of as a filter5 which passes electrons with spins oriented in a certain direction 

specified by unit vector n̂ .  The spin-resolved spectrum is then found from the expectation value of 

.ns in the ket        ˆ, , ,t t 
  k k  given in (6.2), where 

 
3

1

,n Cartesian coordinate index 





 .ns s   (6.12) 

Then, according to (6.11) the expectation value 

  
           

         
; ,

t t
t

t t

 



  

 


 


k k
k

k

s
s   (6.13) 

measures the μ-component of the spin in a photoelectron state with momentum k  (at time t).  

Using the results of Appendix C  (6.1) and (5.13), we get the normalising denominator in (6.13) in 

terms of the transition amplitudes: 

 

                 

       
2 2

, ,

, ,

m

m
m m

t t d t m m t

m t u t

   

 

   






  

 



 

k k

k k
k k k k

k k
 (6.14) 

Similarly, we can write the numerator of (6.13) as follows: 

                    
, ,

1
, ,

2
m m

m m m m

t t u t u t   

  




 

 
  

 
k k k ks  (6.15) 

Here   is the μ-component Pauli matrix.  Thus the expectation value of the spin in (6.13) is simply 

                                                           
4 This is an example of defining an operator,    k k , whose action is restricted to a subspace of the 

entire state space.  The formal mathematics of this is explained by Cohen-Tannoudji et al [2] with their usual 
care.  My argument here is meant to give a more physical flavour to the procedure. 
 
5 In fact, this represents an ideal measurement in which the filtering occurs with perfect efficiency.  There is a 
quite neat formalism (see [10]) for describing less ideal measurements – the so-called efficiency matrix.  
However, it doesn’t really add much to the discussion here, so the reference will have to suffice. 
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k k

k
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s  (6.16) 

But this is the trace over spin of a matrix product 

        
1

; , ; ,
2

m
t Tr t  

 
  

 

Sk ks  (6.17) 

We identity the spin density matrix of the photoelectron as 

    
       

   
2,

, ,
; ,

,

m m

m m

m
m

u t u t
t

u t

 










  
 



S k k
k

k
 (6.18) 

Clearly       ; , 1
m

Tr t 
S k .  Now we could have calculated the spin density matrix directly as a 

reduction of the full density operator          ; , , ,t t t 
  k k kρ by tracing out the 

momentum dependence.  Let’s show that this procedure gives the same result as (6.18).  From (6.2) 

we have 

  
           

         
; ,

t t
t

t t

 

 

 


 


k k
k

k
ρ  

 Hence 

        
           

         1 2 1 2

1 2

, ,

, ,
; , ; ,

m m m m

m t t m
t t d

t t

 

 

 
 

 





 
    

    
kS

k k k k
k k k

k
Tr  

In Appendix C  we show that  

                    1 2 1 2, , , ,d m t t m m t t m   
   




     k k k k k k k  

and that 

              
2

,
m

t t m t  
  k k  

Thus, writing this in terms of the transition amplitudes (5.13), we obtain exactly our previous result 

(6.18). 

 

7 How spectra depend on polarisation 
 The formalism developed above is very general; it allows the full spin and angle resolved 

photoemission spectrum to be calculated for any polarisation state and time-dependence of the 

exciting light field.  An important part of the physics of this, to reiterate, is that although the electron 

spin does not appear in the electron-light interaction, the polarisation of the light couples to the 
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orbital angular momentum of the electron, and thus spin-orbit coupling may link light polarisation to 

photoelectron spin indirectly.  

In this section, we consider experiments in which the spin is not measured.  Photoemission spectra 

usually do depend on the polarisation of the light used, simply because of the usual orbital angular 

momentum selection rules – see Appendix B  .  In magnetic systems, a different type of polarisation-

dependence may arise due to the lifting of degeneracies in the presence of a magnetic moment.  In 

this way, photoemission spectra may exhibit a kind of magnetic dichroism [11]. 

If the spin is not measured, the total probability density for exciting a photoelectron of momentum 

k  and any spin with light of polarisation   is (see  (6.10))  

                   ; , , ,
m

m mm

W t Tr t Tr Tr t
 

    
 k T k T kπ π  (7.1) 

Thus 

        ; , ,W t Tr t


    k kπ    (7.2) 

where  ,tk is a 2x2 matrix in the polarisation indices which we can choose to refer to the s- and p-

polarisation basis vectors defined in Appendix A   

         , , , ,
ss sp

m

ps pp mm
m

t t Tr t
   


 

 
       
 

k T k T k   (7.3) 

Using the rules for the Stokes parameters given in section 4, we can now collect in Table 1 below the 

rules showing how to calculate the spectra corresponding to common polarisation states. 

Now photoemission spectra, spin-resolved or not, generally depend on the polarisation of the light, 

show dichroism in other words, due to the usual selection rules and geometrical factors; all this is 

built in to the above formulae, of course.  However, spin-orbit coupling may lead to additional 

dependence on polarisation.  In magnetic systems, spectra may show dichroism where the 

corresponding non-magnetic systems would not, a kind of magnetic dichroism in fact, and this may 

be a useful way to probe magnetic systems without actually spin-resolving the spectra.  It’s actually a 

very rich picture, and is best illustrated by actual calculations, eg [11]. 

 

Polarisation  ; ,W tk  

Unpolarised  
1

2
ss pp   

s-polarised ss  

p-polarised pp  

Right-hand circularly polarised    
1

2
ss pp sp psi      

 
 

Left-hand circularly polarised    
1

2
ss pp sp psi      

 
 

Table 1 

Note that, from (6.7),  ,tk is Hermitian, ie     
 

 , so that W in Table 1 is always real. 
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8 How spectra depend on spin 
Without further algebra, one can see from (5.9) that spin-orbit coupling enters this problem only 

through the initial state  0 and the Hamiltonian 
0
which controls the time evolution of the 

electron system; the evolution operator itself only contains the electron-photon interaction which is 

independent of spin.  Now suppose spin-orbit coupling is neglected in  0 - for example, the 

initial state might be a 
1/2

S  core level and spin-orbit coupling might be negligible at photoelectron 

energies.  Then    t
 is an eigenket of 

z
s with the same eigenvalue 

0
m as the initial state (ie 

  0
0 ,

l
n m m   ), and the tensor defined in (6.7) has the form 

    
0 0 0 0, ,

, ,
smm m m m m m m

T t T t 
 

 

 k k  (8.1) 

In this case, spin-polarisation of the spectrum could only arise if the spin-up and spin-down states 

were non-degenerate, as in a magnetic system.  Otherwise, the spin-up and spin-down spectra 

would be identical and no net spin-polarisation could be seen in the spectra. 

It is easy to see, then, that if spin-orbit coupling were neglected in the way described above, the spin 

density matrix has the form – see (8.1): 

    
0 0, ,; , m m m m

mm
t   



  
 

S
k   (8.2) 

Therefore (6.17) implies that without spin-orbit coupling    ; , 0 ; ,x yt t  k ks s , whatever 

the spin 0m of the initial state  0 , while   0; ,z t m ks .  This is all very natural. 

Thus, regarding the spin-polarisation of the spectrum, the position can be summarised as follows: 

1. For non-magnetic systems, there is no spin-polarisation in the absence of spin-orbit coupling. 

2. For non-magnetic systems, spin-orbit coupling in either the initial state or the final state or both will 

generally give rise to spin-polarised spectra, depending on the polarisation of the light (see [11]). 

3. For systems with permanent magnetic moments, the spin-up and spin-down electron states are non-

degenerate and this can give rise to spin-polarised spectra even without spin-orbit coupling. 

Since (6.18) defines a normalised 2x2 Hermitian matrix, the spin density matrix can be written in the 

form [7] 

       
1

; , ; ,
2

S t t  k M k .   (8.3) 

where the spin polarisation vector M  is given by 

           ; , 2 ; , , , ,
m

M t Tr t t x y z      
Sk ks   (8.4) 

This follows immediately from the properties of the Pauli matrices [7].  Thus if we measure the 

photoelectron spin component along a direction given by unit vector  , ,x y zn n nn  we have  

    ; , ; ,t n t 


 .n k kss   (8.5) 

From (8.4), then, we have 
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1

; , ; ,
2

t t .n k n.M ks   (8.6) 

This nice result tells us how to determine the spin-polarisation M  by changing the orientation of the 

spin detector. 

Thus, we now have both a way of calculating the photoelectron spin density matrix (section 6.2) and 

a protocol for determining it experimentally – measure the spin polarisation M . 

 

9  How spectra depend on time 

9.1  The transition amplitudes 

Now we calculate the time-dependence of the evolution amplitudes    ,mu t k  given by equation 

(5.13).  Inserting a complete set of electron energy eigenkets (3.7), a move pretty well forced by the 

presence of 0i te , we find from (3.7), (5.3) and (5.11) 

 

              

        

          

0 0

0

0

0 0

0 0

, , 0

, , , 0

, , , 0

t

m

t
i t i t

Q

t i E t

Q

u t i dt m t t

i d dt t m Q Q e e

i d dt t e m Q Q

 



 

  

  

  

 

    

   

   



 

 

k k e q .

k e q .

k e q .

d

d

d

 

Recall that 0E is the energy eigenvalue of the initial state.  But we must have  

    
2

,, , ,
2

m Q

k
m Q C E E    k k   (9.1) 

I have the following argument for this statement.  The quantities , ,m Qk are the coefficients in 

an expansion of the energy eigenket6 in momentum eigenkets (3.12).  Therefore they are also the 

coefficients in an expansion of the corresponding position space wave functions: 

 , , , ,
m

Q d m m Q  r k r k k   

But we know that for positions R outside the range of the binding potential in the electron system 

(such as the location of the instruments detecting and measuring the photoelectron) the energy 

eigenfunction is a linear combination of free space momentum eigenfunctions with 
2 2 2k  k .  

Therefore (9.1) must hold.  

 As a result of (9.1), then, we have 

                 0

,0
, , 0

t i E E t

m m Q
Q

u t i dt t e C E Q    k k e q .d   (9.2) 

To tidy this up a bit, define 

                                                           
6 As noted in section 3.1, the states ,Q are scattering states, solutions of the Lipmann-Schwinger equation.  

When dealing with the surface of a crystal, Pendry called them “time-reversed LEED states”. 



20 

 

            , , 0m m Q
Q

d C E Q 
 k k e q .d   (9.3) 

and 

      0

0
,

t i E E t
f E t i dt t e

      (9.4) 

Thus  

          , ,m mu t d f E t 
k k   (9.5) 

 

9.2 Time-dependent spectra 
Using this expression in (6.7) we find 

 
     

         

2
, ,mm mm

mm m m

T t D f E t

D d d

 

 

 

 

 

 





k k

k k k
  (9.6) 

Equations (9.4) and (9.6) account for a general time-dependent field. We now consider in more 

detail the two important special cases mentioned in section 3.1. 

 

Periodic field  

If   0
i tt e  , we recover the standard Golden Rule form for the transition rate induced by a 

periodic perturbation.  It’s easy to see that  

 

 

 
 

0( ) 0
0

0

2
2 2 0

0 2

0

sin( )
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sin ( )
,

i E E t E E t
f E t e

E E

E E t
f E t

E E

 







   


 

 


 

  (9.7) 

The usual somewhat shabby trick is to observe that  
2

0lim , 2 ( )
t

f E t t E E  


   .  This can be 

made less shabby (see, for example, [13]) by observing from (9.7) that  
2

,f E t is strongly peaked at 

0E E    with a width of order 1t .  Then, if the energy resolution is not too good, ie 1E t  we 

can approximate 
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I

I
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xtE E t
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xE E











 

 


  
  

 
    (9.8) 

So, as usual, from this we obtain the same result as if we’d used the shabby delta function 

expression, but we don’t have to feel bad about it. 
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Pulsed field 

Suppose the function  t represents a pulse of the kind described in section 3.1, ie a periodic 

variation modulated by a peaked envelope function    0
i tt t e   .   If the peak of the pulse 

occurs well after 0t   then for long times, we encounter the Fourier transform of  0 t : 

 
   

   

0 0

0 0

lim ,
t

i t

f E t i E E

dt e t











   

 
  (9.9) 

As we know from studying the excitation and dynamics of wave packets (see [14], [15]), the physics 

of this is as follows.  Suppose the field pulse has duration  .  If we follow the evolution of the state 

ket using (5.5) and (5.6), we find that the ket acquires an excited component which evolves in time 

into an outgoing wave packet – the photoelectron – consisting of a superposition of energy 

eigenstates with energies peaked around IE   and with an energy spread of 1~  .  This is why the 

Fourier transform (9.9) shows up in the transition rate.  

 

10 Summing over the initial states 
Sometimes we know the initial state from which photoexcitation has occurred, often (eg in core 

level photoemission) because the eigenvalue spectrum makes it fairly obvious.  In principal, 

however, we don’t know this information, and we must sum over all possible initial states. 

The first step in this is to give the tensor (6.7) or (9.6) an index labelling the initial state to which it 

corresponds: 

 IT T   (10.1) 

Given the nature of the initial state, see (5.1), we can see that the corresponding tensor must, in 

general, be a function of the energy IE  and the remaining quantum numbers – eg  ,l sm m or 

 , jj m in (5.1).  Give these remaining quantum numbers the collective index iQ .  Thus the energy 

eigenvalue is, in general, to be labelled by iQ and an index n which might specify the principal 

quantum number in a core level or something analogous like a band index.  We can write 

    
I I II I ,nE E Q Q QT T T   (10.2) 

Now we can write the full tensor summed over initial states in terms of a projected or partial density 

of states: 

      
I I I I

I I

I

I

, ,
,

n n
n n

E d E         Q Q Q Q
Q Q

T T T T    

Or 

    
I I

I

d n   Q Q
Q

T T   (10.3) 

where 
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I I,n

n

n E   Q Q   (10.4) 

Now, if for a periodic field, we insert the Golden rule result into (9.6), we easily obtain 

    
I I

I

2 kt n E E     Q Q
Q

T D   (10.5) 

in which D is the tensor symbol for 
s sm mD

  in (9.6).  Thus the full spectrum is a sum of contributions 

from each set of quantum numbers IQ  weighted by the corresponding partial density of states.  

Some of these contributions will probably be zero by virtue of the selection rules embedded in the 

matrix elements (9.3) and thus in the tensor D . 

 

 

11 Post-amble  
Perhaps it’s worth briefly summarising the aims of this note and what its main results are.  We 

started with the idea of providing, at the 1-electron level, a fairly comprehensive and general 

theoretical description of the photoemission process itself.  This was motivated by experimental 

developments associated with exploiting the polarisation and pulsed nature of modern light sources, 

together with the capability of measuring the spin of photoelectrons.  These aspects were naturally 

not in focus when the original first-principles calculations of angle-resolved photoemission were 

made in the 1970s and 1980s, so it seemed worthwhile to fill them in now.  We did this by 

formulating the photon part of the problem in terms of the polarisation tensor, and the electron spin 

part in terms of the photoelectron spin density matrix.   We worked out general formulae by which 

the angle-resolved photoemission spectral weight and spin density matrix can be found, as a 

function of time, from the usual experimental parameters – photon energy, incidence angles and 

Stokes parameters.  Obviously, there are many input parameters for the experimentalist to adjust 

here, as well as a wealth of measureable properties of the emitted electrons – it’s a richly detailed 

picture, certainly, but this is what gives photoemission its special power.  We cast our general 

formulae in terms of a set of transition amplitudes linking the initial states to plane-wave 

photoelectron states, and we combined these amplitudes, dyadic-wise, into a transition probability 

matrix or tensor, which contains all information about all the electron-photon transitions that can be 

excited in the system.  The experimental conditions in any given measurement then determine 

which of these transitions actually contribute to the observed spectral weight.  See Vasilyev et al [16] 

for a recent take on such questions. 

What we did not seriously consider here, apart from offering a few hints, is the question of how to 

calculate the transition amplitudes and probability matrix.  That is the basic electronic structure part 

of the problem, which was the focus of the original first-principles calculations of angle-resolved 

photoemission referred to above.  I plan to post a couple of supplementary posts in this series; one 

illustrating the interesting interactions between photon polarisation, electron spin and spin-orbit 

coupling; the other linking the present general formulation to the underlying electronic structure 

(described by multiple scattering theory). 
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Appendix A   Polarisation Basis Vectors 

Let the direction of the incident photons point along a unit vector q  with polar angles ,q q  : 

  sin cos ,sin sin ,cosq q q q q    q   

Note that we expect this to be pointing into the crystal, ie we require that ˆ 0zq  ; thus 

/ 2 , sin 0, cos 0q q q        .  To serve as a polarisation basis we need to define a pair of unit 

vectors    1 2,e e  which are orthogonal to each other and to q  (this latter being a requirement of 

electrodynamics, not quantum mechanics).  We choose  1e  to lie in the xy-plane of the crystal-fixed 

Cartesian coordinate system (see section 2), ie in the plane of the surface.  This corresponds to s-

polarisation in the lingo of photoemission.  Finally, we’ll take the vector  2e to have a positive z-

component pointing out of the surface, ie towards the electron detector.  This corresponds to p-

polarisation in the lingo of photoemission. 

To find  1e , we note that it can be written    1 , ,0a be , that it must be orthogonal to the photon 

momentum  1 0.e q  and that it has unit magnitude.  This is sufficient to determine  1e in terms of 

the photon polar angles.  In fact 

    1 sin , cos ,0q q  e   

To determine the p-polarisation vector, we note that    2 1
 e q e , which yields 

    2 cos cos , cos sin , sinq q q q q      e   

But we noted above that the z-component of  2e  should be positive and that the photon direction 

was such that sin 0q  .  Thus we choose the lower sign in the above equations for    1 2,e e and 

finally write 

 

 
   
   

1

2

sin cos ,sin sin ,cos

sin ,cos ,0

cos cos , cos sin ,sin

q q q q q

q q

q q q q q

    

 

    



 

  

q

e

e

   (A.6) 

Now the most general (complex) vector describing a pure polarisation state can be written 

    1 2cos sin ie   χ e e   (A.7) 

Why?  Because the two coefficients would be complex numbers, but are constrained by 

unimodularity and the fact that an overall phase is irrelevant – hence we need only 2 real 

parameters, ,   not 4.  If 0  then (A.7) represents linear polarisation at an angle   to  1e . 

If / 4, / 2       , then (A.7) represents (left/right hand) circular polarisation7.    

                                                           
7 Note that 

    1 2, ,e e q form a left-handed coordinate system, since we take ˆ 0zq  (ie q points into the 

crystal). 
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Appendix B    Radial and angular parts of the e-photon interaction 

The goal here is to give the electron-light interaction in a form convenient for the calculation of 

matrix elements, including the orbital selection rules, for any experimental geometry.  First we write 

the interaction in terms of the spherical harmonics for 1l  (here / r rr is a unit vector 

corresponding to the angles ,   : 
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  (B.1) 

From these formulae we can easily find 
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  (B.2) 

and  
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  (B.3) 

Now if we write 

        
x y z

x y z
r e e e

r r r

    
   

 
e .r   

and use (B.3), then it’s algebra to show that 

      
1/2 1

1
1

4

3
m m

m

r g Y 



 
  
 

e .r r   (B.4) 

where the coefficients are given by 
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  (B.5) 

Being combinations of the photon polarisation vector components given by (A.6), these coefficients 

are functions of the photon incidence angles.  [Note that this little piece of algebra is an illustration 

of the theory of spherical tensor operators (here tensors of rank 1, ie vectors) using explicit formulae 

for the spherical harmonics.  It’s an easy application, obviously, so there seems no need to use the 

full tensor operator machinery, Wigner-Eckart theorem [4] etc, even though that’s actually what’s 

going on here.] 

Finally, we note that there’s no dependence on spin in this interaction.  Thus, just to be formal about 

it and write the interaction as an operator in the tensor product space of orbital and spin degrees of 

freedom, the spin operator is the unit operator: 

     
 v   (B.6) 

Here the “orbital” part of the operator is given by 
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  (B.7) 

In this last equation we noted explicitly that the g-factors are functions of the photon direction 

through the polarisation vectors    1 2,e e .  
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Appendix C   Projectors in a continuous state space 

Projection operators in a discrete state space are pretty simple objects, but, as the present 

application to photoemission demonstrates, projectors in a continuous space, (6.1) for instance, are 

a bit more tricky, liable to lead the naïve into puzzling formulae involving dangling delta functions 

and similar dangerous-looking algebra.  In this appendix, we give some results which are needed in 

the photoemission problem and illustrate how to deal with such continuous space problems.  

Let’s define a projector in momentum space by a slightly modified version of (6.1): 

 
 

/2

/2

/2 /2 /2

/2 /2 /2

x x y y z z

x x y y z z

k k k k k k

x x x y y y z z zk k k k k k

d

dk k k dk k k dk k k





  

  

  

          



  

k k

k k
k k k k

 (C.1) 

Let’s define a shorthand notation 

           , , /2, /2, /2x y z x x y y z zk k k k k k k k k  
    

±k  (C.2) 

Then (C.1) becomes 
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k
k k k k  (C.3) 

Here we have omitted (for now; we’ll put them back at the end) the irrelevant spin degrees of 

freedom – they are discrete and cause no problems – and written the momentum integral in terms 

of Cartesian, rather than polar, coordinates.  The point is that (C.1) projects on to a region of 

momentum space centred on k  and with volume x y zk k k   .  We imagine that this volume is 

small, representing something like the resolution of a measuring apparatus, but not zero. 

Note that we can always write 
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 (C.4) 

where  x is the Heavyside function: 
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Now consider a matrix element between arbitrary kets ,   : 
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If  (let’s call it the resolution volume) is small enough, and if the amplitudes ,   k k  are 

smooth functions of k , then it will be a good approximation to set them equal to ,  k k  and 

take them out of the integral, which is then trivial: 

       k k k  (C.6) 
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This is very sensible physically.  If the resolution becomes infinitely small, 0  (the size of the 

pinhole or whatever in the apparatus goes to zero), then the amplitude for a particle to get through 

must also go to zero, linearly.  But it would be a mistake to assume that 0 is equivalent to 

 k k k , because that would produce the result      k k k . 

In the same vein, let’s consider the matrix element      k k .  Taking the amplitudes 

outside the integral, as above, leads to  
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 (C.7) 

But this time the remaining double integral does not look so trivial.  Clearly it is a product of 3 1-

dimensional integrals of the form 
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Now we can proceed, using (C.4) and (C.5), as follows: 
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Reverting back to 3 dimensions, we can now see that 
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and (C.7) becomes 

         k k k k  (C.9) 

Next consider the matrix element  k k , where, again,  is some arbitrary state ket.  Then, 

proceeding as above, 
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 (C.10) 

But now we can use (C.4) to write 
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Thus 

               
- +k k k k k k k  (C.11) 

Note that (C.11) implies  
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Of course, this must be the case for (C.11) to be consistent with (C.9), so all is well.  

Now consider the following matrix element of some operator : 
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Depending on , it may be OK to make the further approximation  

        k k k k k k  

But note that if happens to be a function  f p of the momentum operator p , then 

 1 2 1 1 2fk k k k k , and we have the same problem considered above.  If the function f is 

smooth, we can write, using (C.8) 
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 (C.12) 

Note that if is independent of momentum, then   1f k and we regain (C.9).  

Formulas (C.6), (C.9) and (C.12) are all we need for the photoemission problem.  Putting the spin in 

again, as per (6.1), we obtain 
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And for the two cases in which   sf p , ie independent of spin, or   kg s , ie 

independent of momentum, we get 
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