
C:\Blogs\TDSE\Solving the TDSE (1).docx

Solving the Time-Dependent Schrödinger
Equation

Blog version

Paul Durham

Scientific Computing Department, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK

2 June 2020

Abstract

Notes on the numerical solution of the time-dependent Schrödinger equation (TDSE). The structure

of the 1-dimensional code TDSE1 is described. The results of tests against analytic, semi-analytic and

alternative numerical approaches are given. A slightly modified code ITP for finding bound states by

imaginary time propagation is also described

Contents
1 Introduction ... 2

1.1 The x-t mesh ... 2

2 The Cayley-Crank-Nicolson Algorithm ... 2

2.1 Accuracy in the time-step ... 3

2.2 Unitarity.. 4

2.3 The differencing scheme .. 5

3 The structure of the code .. 6

3.1 Function Prop_CCN .. 7

3.2 Function Propagate .. 7

4 Tests ... 8

4.1 Free plane-wave-packets .. 8

4.1.1 Short-time behaviour .. 9

4.2 Static uniform field dynamics ... 14

4.3 Oscillatory uniform field dynamics ... 18

5 Imaginary time propagation – the ITP code .. 21

References .. 25

2

1 Introduction
My C++ code, TDSE1, solves the 1-electron time-dependent Schrödinger equation (TDSE) in 1

dimension, 1 , by treating it as a partial differential equation (PDE) described on a mesh of points in
space (x) and time (t). There are no basis functions, eigenstates or anything like that – this is not a
spectral method. The wave function at any point and time is thus represented by a complex number
and the set of such numbers form wave function vectors.

I think of TDSE1 as a kind of toy code, because I designed for interesting toy problems which can’t be

solved analytically even in 1 . It was also an exploratory project for me, learning about the
numerical solution of PDEs, rather than the ordinary differential equations usually encountered in
electronic structure calculations. I wanted to get into the nuts and bolts of solving time-dependent
quantum problems numerically.

The problems to be handled with this code are initial value problems: the initial state (in this case

the wave function at time 0t) is given as a set of values (ie a complex vector) on the x-mesh, and the

code then finds the wave function vector on the same x-mesh at some later time. The problems for
which this method is generally essential are those in which the Hamiltonian is time-dependent –
driven systems. However, for testing purposes we use it in these notes (sections 4.1 and 4.2) to
study some problems in which the Hamiltonian is time-independent. Finally, in section 5, we
describe a modification in which a fictitious propagation through imaginary time can be used to find
bound states.

1.1 The x-t mesh

We use a regular space mesh in the interval min maxx x x given by the set of xN points

 min , 0,1,2,... , 1j xx x j x j N (1.1)

where

 max min

1x

x x
x

N

 (1.2)

The code propagates the wave function vector forward from an initial time 0t in tN steps of

duration t to a final time 0 1tt N t . Note that there is a relationship between the x-mesh

increment x and the time t through which one can expect to propagate the solution with

stability and with a given accuracy – see [1] and [2]. But t just specifies the times at which one

requires the wave function. Often it will be the case that t t . Thus within the driver function

Propagate, the time increment is divided, if necessary, into a number of intermediate steps of

duration chosen to ensure stability and accuracy, and the propagation is done sequentially

through these intermediate steps.

2 The Cayley-Crank-Nicolson Algorithm
We start from the usual form for time–propagation involving the evolution operator U (we work in

the position representation but suppress variable x for simplicity of notation):

t
t

3

 , ,x t t t t U t t t t (2.1)

Here the equation of motion of the evolution operator is driven by the Hamiltonian H t :

 0 0, ,i U t t H t U t t
t

 (2.2)

for which the formal solution is [3]

0

0 1 1 1 0, 1 ,
t

t
U t t i dt H t U t t (2.3)

Splitting the interval t in half and applying the composition property of the evolution operator [4]
we can write (2.1) in the following equivalent ways:

 1

, / 2 / 2,

, / 2 / 2,

t t U t t t t U t t t t

U t t t t t t U t t t t

 (2.4)

Since the evolution operator is unitary, we therefore have

 † , /2 /2,U t t t t t t U t t t t (2.5)

So far, so exact. But if we iterate (2.3) in the usual way, we get

/2 2

2†

/2

/ 2, 1

, / 2 1

t t

t

t t

t t

U t t t i dt H t O t

U t t t t i dt H t O t

 (2.6)

Therefore we can approximate (2.5) as follows:

/2

/2
1 1

t t t t

t t t
i dt H t t t i dt H t t

 (2.7)

This is the so-called Cayley form [1] of the Crank-Nicolson algorithm. Note that the rhs looks like an

explicit scheme whereas the lhs looks implicit – it’s a mixture of the two schemes. As demonstrated

in sections 2.1 and 2.2, this form is 2nd order accurate in and maintains unitarity (and hence the

normalisation of the wave function). If we approximate the action of the Hamiltonian in space by

the 2nd order difference scheme described in section 2.3, we obtain the Crank-Nicolson algorithm for

the TDSE – see [1] and [2]. Hence this algorithm is 2nd order accurate in time, unitary and

unconditionally stable.

2.1 Accuracy in the time-step
From (2.1) and (2.3) we can write

 1 1 1, 1 ,
t t

t
t t U t t t t i dt H t U t t t

 (2.8)

Iterating this leads to

t

4

1

1

1

1 1 2 2 2

3

1 1 2 2

3

1 1 1 2 1 2

1 1 ,

1 1

1

t t t

t t

t t t

t t

t t t t t

t t t

t t i dt H t i dt H t U t t t

i dt H t i dt H t t O t

i dt H t dt dt H t H t t O t

 (2.9)

Up to this point, all the time-ordering in the integrals is correct and no assumptions have been made

about the Hamiltonian commuting with itself at different times. But now let’s suppose that t is

small compared with the time-scale on which the fractional change in the Hamiltonian is significant:

 1
H t H

H H t

 (2.10)

If this holds we can treat the Hamiltonian as a constant. Then we have

 2 321
1

2
t t iH t H t t O t

 (2.11)

It is easy to verify that for a constant Hamiltonian the Cayley-Crank-Nicolson (CCN) form (2.7) ie

 2
1 / 2 1 / 2iH t t t iH t t O t (2.12)

gives exactly this answer up to 2nd order in t , and therefore it is of 2nd order accuracy in the time-

step. Note that for this demonstration to work for a general time-dependent Hamiltonian1 the

condition (2.10) is necessary because of the time-ordering of the integrals.

2.2 Unitarity
Consider the CCN approximation (2.7) and Taylor expand the Hamiltonian about time / 2t t :

 2
/ 2H t H t t t H O t (2.13)

where
/2

/ 2 ,
t t

dH
H H t t H

dt

 . Using this expansion on both sides, we can easily see that

(2.7) reduces to (2.12) with the second order error term being proportional to H .

To demonstrate that this CCN approximation is unitary, write

1 2

2

1 / 2 1 / 2

,C

t t iH t iH t t O t

U t t t t O t

 (2.14)

Because H is Hermitian we can write

1† , 1 / 2 1 / 2CU t t t iH t iH t

 (2.15)

and so the Cayley form CU is obviously unitary:

1 “General” here means that the Hamiltonians at different times may not commute – see [4].

5

 † , , 1C CU t t t U t t t (2.16)

Note: the key step here is that the Hamiltonians on both sides of (2.7) are Taylor expanded about

the same time / 2t t . If they weren’t then the exactness of (2.16) would have to rely on the

commutation on the Hamiltonian at different times, and we can’t assume that. But for practical

calculations with time-dependent Hamiltonians, this section’s message is that in implementing the

CCN algorithm one should evaluate both Hamiltonian terms at time / 2t t .

2.3 The differencing scheme
We imagine evaluating the wave function on the real-space mesh described in section 1.1, and

denote these values by the vector , 0,... , 1j xy t j N y

 j jx t y t (2.17)

The Hamiltonian in atomic units is

2

2

1
, ,

2
H x t V x t

x

 (2.18)

When this operates on the wave function, we need to work out the 2nd derivatives of the wave
function at the x-mesh points, and we use the standard 2nd order formula for this:

2

22

1 1

2

, 2 , ,,

2

j

j j j

x x

j j j

x x t x t x x tx t

x x

y t y t y t

x

 (2.19)

According to section 2.2 we need to find the action of /2H t t on the wave function t . For

the above differencing scheme this is

 1 12

1
, / 2 , 2 / 2

2
j j j j jH x t t x t y t y t y t V t t y t

x

 (2.20)

Which can be represented by a matrix multiplication (/2)t t tH y .

The matrix H thus has a tridiagonal structure illustrated below for 6xN :

0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

d u

l d u

l d u
t

l d u

l d u

l d

H (2.21)

From (2.20) we see that the matrix can be specified by the three vectors: sub-diagonal l , diagonal

 d and super-diagonal u

6

2 2

0 1 12 2 2 2

2 2

ˆ1
1,1,... ,1

2 2

ˆ1 1 1
, ,.... ,

ˆ1
1,1,... ,1

2 2

N

t
x x

t V t V t V t t
x x x x

t
x x

e
l

e
d V

e
u

 (2.22)

where ,j jV t V x t and 0 1 1, ,... ,
xNt V t V t V tV . Here ê is the xN dimensional unit

vector. Note that elements 0l and 1xNu are absent from the matrix H - see (2.21) for example – and

are therefore never referenced in algorithms.

Now we see from (2.14) that we can write the CCN approximation as follows:

 2
1 / 2 / 2 1 / 2 / 2iH t t t t t iH t t t t O t (2.23)

We now know how the Hamiltonian operates on the wave functions. If we define tridiagonal

matrices

, / 2 1 / 2
2

, / 2 1 / 2
2

i t
t t t t

i t
t t t t

+P H

P H

 (2.24)

then (2.23) becomes

 2
, / 2 , / 2t t t t t t t O t

 P y P y (2.25)

The notation here reflects the fact that P represents propagation forward in time while P

represents propagation “backward” in time.

(2.25) is a set of linear equations for the components of the propagated wave function vector

 t ty in terms of the initial wave function vector ty . This tridiagonal system is set up and

solved in function Prop_CCN.

3 The structure of the code
The initial wave function is set up at the beginning of a run by calling function Yzero, which, for each
point in the x-mesh, calls a function to evaluate the chosen wave function at any point x . This can
take many different forms; in the present version of the code the function called by Yzero is Gauss,
which simply returns the normalised Gaussian function of width l , multiplied by a phase factor

corresponding to a wave-packet moving with wave vector (ie speed in au) 0k , namely

2 2

0
1/2

/2
0

ik xx lx l e e

 (3.1)

7

3.1 Function Prop_CCN
As noted in section 2.3, Prop_CCN solves the tridiagonal system in equation (2.25). First, the three

vectors (subdiagonal, diagonal and superdiagonal) comprising the tridiagonal matrices P and P
are found. From (2.24) and (2.22) we find

2

2

2

ˆ, / 2
4

ˆ, / 2 1 / 2
22

ˆ, / 2
4

l

d

u

i t
t t

x

i t i t
t t t t

x

i t
t t

x

p e

p e V

p e

 (4.1)

and

2

2

2

ˆ, / 2
4

ˆ, / 2 1 / 2
22

ˆ, / 2
4

l

d

u

i t
t t

x

i t i t
t t t t

x

i t
t t

x

p e

p e V

p e

 (4.2)

The propagated wave function vector is then found from the system

 , / 2t t t t

 P y r (4.3)

by calling Ctridag, a complex version of the Numerical Recipes tridiagonal solver tridag [1], with the
rhs vector given by

 , / 2t t t

r P y (4.4)

The potential at point x and time t is supplied by a function pot.

3.2 Function Propagate
For the reasons outlined in section 1.1, the basic CCN algorithm implemented in function Prop_CCN
needs a driver. This driver is function Propagate.

This Propagate function takes the wave function vector 1()t1y y at time 1t and evaluates the wave

function vector 2 2()ty y at time 2 1t t by calling the CCN propagator function Prop_CCN.

However, the time difference 2 1t t t may be too large for the CCN algorithm to be used directly

with sufficient accuracy. In fact (see [1], [2]), the increment t over which the CCN algorithm can

accurately used is related to the x-mesh spacing x . We use an initial estimate
2

t a x for this

increment, where the factor a is of order 1. We can then estimate the number of intermediate time

steps needed to propagate accurately between 1t and 2t . Function Prop_CCN is then called to

propagate from 1t to 1t t , then from 1t t to 1 2t t , and so on until time 2t is reached.

8

How accurate is this procedure? We can form an error estimate by repeating the propagation with
twice as many intermediate steps (ie by halving the factor a and thus the increment t) and
evaluating the rms deviation between the two results. This doubling of the number of intermediate
time steps is continued until the rms deviation between the wave function vectors is less than a
preset accuracy (set to 10^-6 in this version).

4 Tests
This section gives details of tests of the TDSE1 code against previous completely independent
calculations using the Wave-Packet Dynamics (WPD) code [5], which uses variants of the energy
eigenstate method [6]. This method applies when the Hamiltonian does not depend on time. The
idea is to write the wave function as a linear combination, ie a wave-packet, of energy eigenstates:

 , ii t
i i

i

x t a x e (6.1)

Here the solutions of the time-independent Schrödinger equation are

i i i

i ix x

x x H x x x

The above assumes a discrete spectrum; for continuous spectra, sums become integrals in the usual
way. The wave-packet (6.1) automatically satisfies the TDSE

 , ,i x t H x t
t

So the wave-packet dynamics algorithm, so to speak, is to find the eigenstates of H and combine

them using the quadrature (6.1), subject to a given initial state , 0x t , which then gives the

evolution for 0t .

4.1 Free plane-wave-packets
In this section we compare TDSE1 calculations with those using the Wave-Packet Dynamics code for
FREE space – ie no potentials, fields etc – “FREE” because this is the mode in which the WPD code

was operated. The latter code evaluates the wave-packets dynamics (WPD) equation in 1

21/2 /2, 2 () ikx ik tx t dk a k e e

 (6.2)

for stationary or moving wave-packets. Hence this is a test of the way the TDSE1 code handles free
motion.

We choose the envelope function to be a Gaussian of width l , peaked at 0k k and scaled so that

 , 0x t is normalised to unity:

2 2

0

1/2

/2k k ll
a k e

 (6.3)

9

which leads to

2 2

0
1/2

/2,0 ik xx lx l e e

 (6.4)

 to be compared to (3.1).

4.1.1 Short-time behaviour
It is of interest to see how a stationary wave-packet at 0t evolves for short times because we can
do a short-time expansion analytically. Expand the WPD equation in powers of t :

2 /2

2
2

1 2

, ()

() 1
2

,0 ()

ikx ik t

ikx

x t dk a k e e

k
dk a k e it O t

x it x O t

 (6.5)

where

2

1 ()
2

ikxk
x dk a k e (6.6)

Let’s take the envelope function to be the normalised Gaussian defined above in (6.3) with 0 0k .

Then, by the standard tricks of Gaussian integrals (ie differentiating the integral with respect to l -
see Error! Reference source not found.) it’s easy to show that

2 2

1/2

1 2 2 /2

5 1/2

1

2
x ll

x x l e
l

 (6.7)

These functions look like this

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
x

ψ(x,0)

ψ(1)(x)

10

Full WPD calculations give exactly this behaviour. When does the small-time expansion break down?
The following diagram shows the difference between a full WPD calculation and the linear
approximation as a function of time for 0x :

The TDSE1 code also gives this behaviour, as the following results for 0.01t show. Note that
according to the above figure, the linear approximation should be OK for this time, and so TDSE1
should be even better, being based on a second order algorithm – see section 2.1. Note also that

these calculations show the convergence with the number of x-mesh points xN .

0

0.2

0.4

0.6

0.8

-4 -2 0 2 4

Real Part of Wave function at T=0.01 as a function of NX

NX=101

NX=201

NX=401

FREE

R
e
a

l(
p
s
i)

x

L = 1.0

K0 = 0.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.00 0.10 0.20 0.30 0.40 0.50 0.60
time

-ψ(imag) at x=0

Deviation from linearity

11

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

-4 -2 0 2 4

Imaginary Part of Wave function at T=0.01 as a function of NX

NX=101

NX=201

NX=401

FREE

Im
a
g

(p
s
i)

x

L = 1.0

K0 = 0.0

The following graphs show the time-evolution of a stationary wave-packet (0 0k) as determined by

the TDSE1 and WPD methods.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-20 -15 -10 -5 0 5 10 15 20

Real Part of TDSE Wave function

t=0

t=1

t=2

t=3

x

L = 0.5

K0 = 0.0

12

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-20 -15 -10 -5 0 5 10 15 20

Real Part of FREE Wave Function

t=0

t=1

t=2

t=3

x

L = 0.5

K0 = 0.0

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-20 -15 -10 -5 0 5 10 15 20

Imaginary Part of TDSE Wave function

t=0

t=1

t=2

t=3

x

L = 0.5

K0 = 0.0

13

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-20 -15 -10 -5 0 5 10 15 20

Imaginary Part of FREE Wave function

t=0

t=1

t=2

t=3

x

L = 0.5

K0 = 0.0

The following two graphs show the time-evolution of the density.

0

0.2

0.4

0.6

0.8

1

1.2

-20 -15 -10 -5 0 5 10 15 20

TDSE Probability Density

t = 0

t = 1

t = 2

t = 3

t
=

 0

x

L = 0.5

K0 = 0.0

14

0

0.2

0.4

0.6

0.8

1

1.2

-20 -15 -10 -5 0 5 10 15 20

FREE Probability Density

t=0

t=1

t=2

t=3

P
ro

b
a

b
ili

ty

x

L = 0.5

K0 = 0.0

Clearly, all these calculations lie on top of each other. My focus here is testing the TDSE1 code, but
I’ll make a quick comment: the physics illustrated by the last two figures is the well-known time
evolution of a free wave-packet with zero velocity [6]; it stays where it is but broadens (ie wave-
packet spreading).

4.2 Static uniform field dynamics
The graphs in this section make the same comparison for wave-packets accelerated by a static
uniform field between the results of TDSE1 and those of the WPD code operating in SUFD2 mode [5],

[7]. Since 0 0k here, we are accelerating the wave-packet from a standing start.

Again, the two sets of results fall on top of one another.

2 A static uniform field corresponds to a linear potential. The spectrum is continuous and the corresponding
energy eigenfunctions needed for (6.1) are Airy functions.

15

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10 15 20

Real Part of TDSE Wave function

t=0

t=1

t=2

t=3

t=
0

x

L = 0.5

K0 = 0.0

E0 = 1.0

-0.4

-0.2

0

0.2

0.4

0.6

-10 -5 0 5 10 15 20

Imaginary Part of TDSE Wave function

t=0

t=1

t=2

t=3

t=
0

x

L = 0.5

K0 = 0.0

E0 = 1.0

16

-0.4

-0.2

0

0.2

0.4

0.6

-10 -5 0 5 10 15 20

Imaginary Part of SUFD Wave Function

t=0

t=1

t=2

t=3

x

L = 0.5

K0 = 0.0

E0 = 1.0

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10 15 20

TDSE Probability Density

t = 0

t = 1

t = 2

t = 3

P
ro

b
a

b
ili

ty

x

L = 0.5

K0 = 0.0

E0 = 1.0

17

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10 15 20

SUFD Probability Density

t=0

t=1

t=2

t=3

P
ro

b
a
b
ili

ty

x

L = 0.5

K0 = 0.0

E0 = 1.0

So, again, everything is fine. The physics in the last two figures is the acceleration (and spreading) of
the wave-packet to the right.

But here’s an interesting thing that’s worthwhile noting.

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10 15 20

TDSE Density

t = 0

t = 1

t = 2

t = 3

P
ro

b
a

b
ili

ty

x

L = 0.5

K0 = 0.0

E0 = 1.0

18

In these TDSE1 calculations for the static uniform field problem, I made the calculations on an x-
mesh that ran over the interval 10 20x . The wave function is very small at the end points of
this mesh and the results agree well with those of the WPD code in the SUFD mode. However I
originally used an x-mesh over the interval 5 15x . As the graphs above show, the wave
functions are not at all small at the end points of this mesh. This should be a problem, because my
implementation of the CCN differencing scheme assumes that the wave function vectors are zero at
the end points of the mesh. And indeed it is – the figure above shows what happens to the density
when calculated on this too small mesh:

Maybe this disease could be cured by some kind of absorbing boundary condition, but for my
purposes it seems safer simply to use a mesh covering a big enough region to enclose the whole
wave function.

4.3 Oscillatory uniform field dynamics
The graphs in this section make the same comparison for wave-packets accelerated by a oscillating
uniform field between the results of TDSE1 and those of the WPD code operating in OUFD mode [5],
[7]. This toy model bears some similarity to the problem of the ionisation from a bound state
induced by a strong laser field.

This is the first test case which involves a time-dependent Hamiltonian, and again the results are in

excellent agreement. Note that there is a gauge choice to be made in this and the previous (ie

SUFD) case – see [7]. Since the TDSE1 code works with a time-dependent scalar potential, the wave

functions it produces must be compared with WPD results in a gauge in which the vector potential is

zero. In the WPD code, however, it’s much easier to solve the problem in a gauge in which the scalar

potential is zero. The quantum transformation between gauges is straightforward. This is quite an

interesting point that is explained in my notes on accelerating wave-packets [7]; at some point I will

probably turn those notes into another post in this series.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-15 -10 -5 0 5 10 15 20 25

Real Part of TDSE Wave Function

t=0

t=1

t=2

t=3

x

L = 0.5

K0 = 0.0

E0 = 1.0

OMEGA = 1.0

19

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-15 -10 -5 0 5 10 15 20 25

Real Part of OUFD Wave Function

t=0

t=1

t=2

t=3

x

L = 0.5

K0 = 0.0

E0 = 1.0

OMEGA = 1.0

-0.4

-0.2

0

0.2

0.4

0.6

-15 -10 -5 0 5 10 15 20 25

Imaginary Part of TDSE Wave Function

t=0

t=1

t=2

t=3

x

L = 0.5

K0 = 0.0

E0 = 1.0

OMEGA = 1.0

20

-0.4

-0.2

0

0.2

0.4

0.6

-15 -10 -5 0 5 10 15 20 25

Imaginary Part of OUFD Wave Function

t=0

t=1

t=2

t=3

x

L = 0.5

K0 = 0.0

E0 = 1.0

OMEGA = 1.0

0

0.2

0.4

0.6

0.8

1

1.2

-15 -10 -5 0 5 10 15 20 25

TDSE Probability Density

t = 0

t = 1

t = 2

t = 3

P
ro

b
a

b
ili

ty

x

L = 0.5

K0 = 0.0

E0 = 1.0

OMEGA = 1.0

21

0

0.2

0.4

0.6

0.8

1

1.2

-15 -10 -5 0 5 10 15 20 25

OUFD Probability Density

t=0

t=1

t=2

t=3

P
ro

b
a

b
ili

ty

x

L = 0.5

K0 = 0.0

E0 = 1.0

OMEGA = 1.0

Here the physics is similar to that of the SUFD calculations of the last section, but now the initial
acceleration of the wave-packet to the right slows down as the field changes direction. After more
time elapses it will start to move to the left [7].

5 Imaginary time propagation – the ITP code
Here’s another interesting thing that can be done with the time-dependent Schrödinger equation:

find bound states (see, for example, [8]).

First let’s recap what we know about wave-packets. Suppose we have a time-independent

Hamiltonian H with eigenstates and eigenvalues ,i ix :

 , 0,1,2,3,....i i iH x x i (7.1)

Let’s take any linear combination of these eigenstates as the initial 0t wave function:

0

, 0 ,0 i i
i

x t x a x

 (7.2)

Now since the Hamiltonian is static, the solution of the TDSE in the form of the evolution operator is

just () iHtU t e , such that

0

, ,0

ii t
i i

i

x t U t x

a x e

 (7.3)

Suppose that we propagate the wave function through a sequence of imaginary times:

 , 1,2,3....n nt iT in n (7.4)

22

where , nT are real and positive. In other words we march down the negative imaginary time axis

in steps of length . Then, from (7.3), we can write

0

, , in
n n i i

i

x x t x in a x e

 (7.5)

Now suppose that the spectrum of H has a discrete part such that the state 0 x is the lowest

lying bound state. Then

 0

0 0
1

()in n
n i i

i

x e a x a x e

 (7.6)

where 0 0i i . Thus as n increases, the contributions from all states other than the lowest

bound state die out, and we have

 0

0 0lim n
n

n
x a x e

 (7.7)

Now the point of this is that if one solves the TDSE numerically for the sequence of imaginary times

(7.4) starting from any initial wave function (see (7.2)), we will generate a sequence of wave

functions that converges to that of the lowest bound state.

From (7.7), we can find 0 x simply by normalising lim n
n

x

. A simple way to find the

eigenvalue is to look at the norms of the sequence of wave functions n x . Define

2

n nN dx x (7.8)

Then, since 0 x is normalised to unity by hypothesis, we easily see from (7.7) that

 0
2 2

0lim n
n

n
N a e

 (7.9)

and thus

 021lim n

n
n

N
e

N

 (7.10)

from which 0 is easily found.

Finally, if one wishes to find the other bound states, having found the lowest, one can simply

propagate again through the sequence of imaginary times starting with an initial wave function that

is orthogonal to 0 x . Thus, in terms of (7.2), we can define

0 0

1

,0 ,0 ,0

i i
i

x x x dx x x

a x

 (7.11)

Since ,0x contains no contribution from the lowest bound state, the imaginary time

propagation procedure described above will project out the lowest remaining bound state, ie 1 x .

And so on for the other bound states.

23

Finally, what physical significance can we attribute to this imaginary time propagation? One way to

think about this is to compare imaginary time to temperature, recalling the analogy between the

evolution operator and the Boltzmann distribution3. The initial wave function is a bit like an

arbitrary distribution over the eigenstates of the Hamiltonian, and the imaginary time propagation

then represents a process of cooling down so that the system ends up in its lowest energy state. But

this is pretty loose talk. For one thing, the initial “distribution” is not necessarily thermal (ie an

equilibrium distribution corresponding to some temperature) – it can be anything. For another,

although the connection between the imaginary time evolution operator and the Boltzmann factor is

easy to see, what is the “thermal” equivalent of the TDSE itself? What’s the corresponding PDE, with

temperature as an independent variable, in statistical physics? Diffusion? All these questions signal

that it’s a bit too much to regard imaginary time propagation as equivalent to varying the

temperature of an equilibrium system in any real physical sense. But it’s still an interesting analogy.

I implemented this procedure in the ITP code, which is a very straightforward modification of the

TDSE1 code. Here’s an example for a [1-D] square well potential of depth 2 and width 1 in atomic

units – this potential has a single bound state at energy -0.90751. In the following calculations the

initial state was taken to be a normalised Gaussian of width 2 and the time step down the imaginary

time axis was 1 . First, here’s how the eigenvalue estimates converge through the timesteps.

It should be noted that in these calculations the converged bound state eigenvalue was -0.90781 –

not exactly what it should be. I have not yet really looked at the numerical accuracy of the ITP code

but at least it does work.

Next, the sequence of wave functions is compared with the “true” bound state wave function (called

“phi_bs”) as determined by a conventional wave function matching calculation (as, of course, is the

“true” bound state energy). The convergence to the correct solution is clear.

3 Of course, there are proper ways of formally establishing the relationship between imaginary time and
temperature [9]. Here I’m using it somewhat imaginatively.

-0.92

-0.90

-0.88

-0.86

-0.84

-0.82

-0.80

-0.78

-0.76

0 1 2 3 4 5 6 7 8 9

ε
0

e
st

im
at

e

T

Convergence of estimates of ε0

24

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

Bound state of a square well potential

T = 0

T = 1

T = 2

T = 4

T = 8

phi_bs

x

Well depth = 2.0

(Bound state at E = -0.90751)

Gausiian width = 2.0

25

References

[1] “Numerical Recipes in C++ (second edition)”, W H Press, S A Teukolsky, W T Vetterling and B P
Flannery (CUP 2003)

[2] Numerical solution of PDEs v1.0.docx, PJD (DL 2010)
[3] Elementary Quantum Dynamics, PJD (DL 2019)
[4] “Modern Quantum Mechanics”, J J Sakurai (Addison-Wesley, 1994)
[5] Wave-Packet Dynamics Code Notes.docx, PJD (DL 2010)
[6] "On-wave-packet-dynamics", CoSeC Blog, Paul Durham (DL 2020)
[7] Accelerating Wave-Packets v2.0.docx, PJD (DL 2010)
[8] R Kosloff and H Tal-Ezer, Chem Phys Letters, 127, 223 (1986)
[9] “Quantum Statistical Mechanics”, L P Kadanoff and G Baym (CRC Press, 2018)

file:///C:/Maths/Numerical%20solution%20of%20PDEs%20v1.0.docx
../../Quantum%20Dynamics/Time%20Evolution/Elementary%20Quantum%20Dynamics.docx
file:///C:/Wave-Packets/Codes/Wave-Packet%20Dynamics%20Code%20Notes.docx
https://www.scd.stfc.ac.uk/Pages/On-wave-packet-dynamics.aspx
file:///C:/Wave-Packets/Notes/Accelerating%20Wave-Packets%20v2.0.docx

