
Code Coupling Libraries for High

Performance Multi-Physics Simulation

SCD Seminar Series: Code Coupling

Philippa Rubin

4 May 2021

Philippa Rubin Code Coupling Libraries 4 May 2021 1 / 46

Acknowledgements

Software Outlook

Support the UK’s Collaborative Computational Projects

(CCPs) and High-End Computing Consortia (HECs)

Part of the Computational Science Centre for Research

Communities (CoSeC), which is based within STFC.

Have many projects, one of which has been to create a

technical report on available code coupling libraries

https://www.softwareoutlook.ac.uk/

Philippa Rubin Code Coupling Libraries 4 May 2021 2 / 46

What is Code Coupling

Using multiple models

to solve a problem that

one model could not do

on its own

Code 1

Code 2

Code 3

Philippa Rubin Code Coupling Libraries 4 May 2021 3 / 46

Why is Code Coupling of Interest

Simulations that couple

multiple physical phenomena

is not a new idea

Large-scale simulations

require a framework to

translate data between

solvers and coordinate their

separate calculations

Code 1

Code 2

Code 3

Philippa Rubin Code Coupling Libraries 4 May 2021 4 / 46

Who Should be Interested in Code Coupling

Computation 1 Computation 2

data

data

Any developer who wants to do something like this!

Philippa Rubin Code Coupling Libraries 4 May 2021 5 / 46

Who Should be Interested in Code Coupling

Examples

Shared domain problems, e.g. ocean / atmosphere

model

Piecing together two models that describe the same

physical thing

An application that does two things simultaneously with

data dumps e.g. mechanics + statistical analysis

Philippa Rubin Code Coupling Libraries 4 May 2021 6 / 46

Traditional Picture

F1(u1, u2) = 0

F2(u1, u2) = 0

∂tu1 = f1(u1, u2)

∂tu2 = f2(u1, u2)

Coupled evolution problem in

(u1, u2), solved with a built-in

JFKN solver or similar

Many libraries appear limited to

situations like this, as far as

documentation suggests

Philippa Rubin Code Coupling Libraries 4 May 2021 7 / 46

General Applications

exec exec

Developer 1 Developer 2

data exchanged every 100 timesteps

-np 16
-np 128

Could be as simple as two pieces of code running at the

same time, with allocated resources. The above is quite easy

to do with a coupler such as MUI.

Philippa Rubin Code Coupling Libraries 4 May 2021 8 / 46

Why you should use a coupling library

Built to handle mass data send from one code to

another

Prevents building one monolithic executable where

developers only know how pieces of it work

Some of the libraries are very slick and easy to

implement, can be ∼10 lines of code

Easy to organise computing allocation to different parts

of program

Philippa Rubin Code Coupling Libraries 4 May 2021 9 / 46

Traditional Example Demo

Problem Statement:

−∇ · ∇u+∇v · ∇u = 0

−∇ · ∇v = 0

Diffusion and Convection with u and v, with provided

boundary conditions. We will solve this with MOOSE.

Philippa Rubin Code Coupling Libraries 4 May 2021 10 / 46

MOOSE

Multiphysics Object-Oriented Simulation Environment

Finite-element framework

Developed by Idaho National Laboratory

Very recently added training materials, virtual workshop

on YouTube

Lots of helpful material, anything from OOP to finite

difference modelling

Philippa Rubin Code Coupling Libraries 4 May 2021 11 / 46

MOOSE Coupled Diffusion and Convection Demo

Write a short input file containing six things:

1 Mesh

2 Variables

3 Kernels

4 Boundary Conditions

5 Executioner

6 Outputs

Philippa Rubin Code Coupling Libraries 4 May 2021 12 / 46

MOOSE Coupled Diffusion and Convection Demo

Provide a Mesh

[Mesh]

file = mug.e

[]

Philippa Rubin Code Coupling Libraries 4 May 2021 13 / 46

MOOSE Coupled Diffusion and Convection Demo

Coupling Variables

[Variables]

[./ convected]

order = FIRST

family = LAGRANGE

[../]

[./ diffused]

order = FIRST

family = LAGRANGE

[../]

[]

Philippa Rubin Code Coupling Libraries 4 May 2021 14 / 46

MOOSE Coupled Diffusion and Convection Demo

Kernels from Problem Statement

[Kernels]

[./ diff_convected]

type = Diffusion

variable = convected

[../]

[./ conv]

type = ExampleConvection

variable = convected

some_variable = diffused

[../]

[./ diff_diffused]

type = Diffusion

variable = diffused

[../]

[]

Philippa Rubin Code Coupling Libraries 4 May 2021 15 / 46

MOOSE Coupled Diffusion and Convection Demo

Boundary Conditions

[BCs]

[./ bottom_convected]

type = DirichletBC

variable = convected

boundary = ‘bottom ’

value = 1

[../]

[./ top_convected]

type = DirichletBC

variable = convected

boundary = ‘top’

value = 0

[../]

Philippa Rubin Code Coupling Libraries 4 May 2021 16 / 46

MOOSE Coupled Diffusion and Convection Demo

Boundary Conditions continued

[./ bottom_diffused]

type = DirichletBC

variable = diffused

boundary = ‘bottom ’

value = 2

[../]

[./ top_diffused]

type = DirichletBC

variable = diffused

boundary = ‘top’

value = 0

[../]

[]

Philippa Rubin Code Coupling Libraries 4 May 2021 17 / 46

MOOSE Coupled Diffusion and Convection Demo

Ask for a solver

[Executioner]

type = Steady

solve_type = ‘PJFNK ’

[]

Philippa Rubin Code Coupling Libraries 4 May 2021 18 / 46

MOOSE Coupled Diffusion and Convection Demo

How you want to output

[Outputs]

execute_on = ‘timestep_end ’

exodus = true

[]

Philippa Rubin Code Coupling Libraries 4 May 2021 19 / 46

MOOSE Coupled Diffusion and Convection Demo

Figure 1: Convected Variable Figure 2: Diffused Variable

Philippa Rubin Code Coupling Libraries 4 May 2021 20 / 46

MOOSE Summary

Plenty of training materials, easy to learn

Consistent; provided conda environment works well

Restricted to ‘traditional’ picture of code coupling

Difficult to see how to add MOOSE to existing

codebases

Philippa Rubin Code Coupling Libraries 4 May 2021 21 / 46

General Example

exec exec

Developer 1 Developer 2

data

-np 16
-np 128

Coupling doesn’t have to be scientific, can be as simple as

two executables that want to share data between each other

Philippa Rubin Code Coupling Libraries 4 May 2021 22 / 46

MUI

Multiscale Universal Interface

Originally developed by Brown University, maintained

today by STFC

Helpful demos available on GitHub, recent workshop as

part of an IROR training series

Easiest to learn to use in the Software Outlook project

Philippa Rubin Code Coupling Libraries 4 May 2021 23 / 46

Ping Pong MUI Example

ping pong

Developer 1
Developer 2

state

-np 1
-np 1

MUI
Interface

state

state state

Two executables: ping and pong. Fire off values back and

fourth to the MUI Interface

Philippa Rubin Code Coupling Libraries 4 May 2021 24 / 46

Ping Pong MUI Example

Listing 1: ping.cpp

#include "mui.h"

int main() {

mui:: uniface1d interface("mpi:// ping/ifs");

mui:: sampler_exact1d <int > spatial_sampler;

mui:: chrono_sampler_exact1d chrono_sampler;

mui:: point1d push_point;

mui:: point1d fetch_point;

Clone MUI, include header, configure interface (template configs available)

Philippa Rubin Code Coupling Libraries 4 May 2021 25 / 46

Ping Pong MUI Example

Listing 2: pong.cpp

#include "mui.h"

int main() {

mui:: uniface1d interface("mpi:// pong/ifs");

mui:: sampler_exact1d <int > spatial_sampler;

mui:: chrono_sampler_exact1d chrono_sampler;

mui:: point1d push_point;

mui:: point1d fetch_point;

Clone MUI, include header, configure interface (template configs available)

Philippa Rubin Code Coupling Libraries 4 May 2021 26 / 46

Ping Pong MUI Example

Listing 3: ping.cpp

int state = 0;

for (int t = 0; t < 10; ++t) {

state ++;

push_point [0] = 0;

interface.push("data", push_point , state);

printf("Ping sending: %d\n", state);

interface.commit(t);

fetch_point [0] = 0;

state = interface.fetch("data", fetch_point , t, spatial_sampler ,

chrono_sampler);

printf("Ping receives: %d\n", state);

}

return 0;

}

Philippa Rubin Code Coupling Libraries 4 May 2021 27 / 46

Ping Pong MUI Example

Listing 4: pong.cpp

int state;

for (int t = 0; t < 10; ++t) {

fetch_point [0] = 0;

state = interface.fetch("data", fetch_point , t, spatial_sampler ,

chrono_sampler);

printf("Pong receives: %d\n", state);

state --;

push_point [0] = 0;

interface.push("data", push_point , state);

interface.commit(t);

printf("Pong sends: %d\n", state);

}

return 0;

}

Philippa Rubin Code Coupling Libraries 4 May 2021 28 / 46

Ping Pong MUI Example

Listing 5: ping pong with MUI

mpic++ -std=c++11 -O3 ping.cpp -o ping

mpic++ -std=c++11 -O3 pong.cpp -o pong

mpirun -np 1 ./ping : -np 1 ./pong

rank 0 identifier mpi :// ping/ifs domain size 1 peer number 1

rank 1 identifier mpi :// pong/ifs domain size 1 peer number 1

Ping sending: 1

Pong receives: 1

Pong sends: 0

Ping receives: 0

Ping sending: 1

Pong receives: 1

Pong sends: 0

Ping receives: 0

...

Philippa Rubin Code Coupling Libraries 4 May 2021 29 / 46

Ping Pong MUI Example

ping pong

Developer 1
Developer 2

state

-np 1
-np 1

MUI
Interface

state

state state

ping and pong could have been anything in this MUI

example. Can send and receive large amounts of data to and

from the MUI Interface easily

Philippa Rubin Code Coupling Libraries 4 May 2021 30 / 46

MUI Summary

Easiest to learn, quick to implement

Helpful demos available on GitHub, recent workshop as

part of an IROR training series

No dependencies, consistent

Easy to design MUI implementation for pre-existing

codebases

Philippa Rubin Code Coupling Libraries 4 May 2021 31 / 46

preCICE

Precise Code Interaction Coupling Environment

Particular interests in fluid-structure interaction and

conjugate heat transfer simulations

Developed by doctoral candidates from the Technical

University of Munich and the University of Stuttgart.

Has training materials, have to be selective about this,

more verbose coupler

Philippa Rubin Code Coupling Libraries 4 May 2021 32 / 46

preCICE solver dummies

SolverOne SolverTwo

Very similar to the MUI ping pong example, but have to

specify a mesh in configuration

Philippa Rubin Code Coupling Libraries 4 May 2021 33 / 46

preCICE Configuration: Mesh and Data

<solver -interface dimensions="3">

<data:vector name="dataOne" />

<data:vector name="dataTwo" />

<mesh name="MeshOne">

<use -data name="dataOne" />

<use -data name="dataTwo" />

</mesh >

<mesh name="MeshTwo">

<use -data name="dataOne" />

<use -data name="dataTwo" />

</mesh >

Philippa Rubin Code Coupling Libraries 4 May 2021 34 / 46

preCICE Configuration: Participants

<participant name="SolverOne">

<use -mesh name="MeshOne" provide="yes" />

<write -data name="dataOne" mesh="MeshOne" />

<read -data name="dataTwo" mesh="MeshOne" />

</participant >

Philippa Rubin Code Coupling Libraries 4 May 2021 35 / 46

preCICE Configuration: Participants

<participant name="SolverTwo">

<use -mesh name="MeshOne" from="SolverOne" />

<use -mesh name="MeshTwo" provide="yes" />

Philippa Rubin Code Coupling Libraries 4 May 2021 36 / 46

preCICE Configuration: Participants

<mapping:nearest -neighbor

direction="write"

from="MeshTwo"

to="MeshOne"

constraint="conservative" />

<mapping:nearest -neighbor

direction="read"

from="MeshOne"

to="MeshTwo"

constraint="consistent" />

<write -data name="dataTwo" mesh="MeshTwo" />

<read -data name="dataOne" mesh="MeshTwo" />

</participant >

Philippa Rubin Code Coupling Libraries 4 May 2021 37 / 46

preCICE Configuration: Communication and Coupling

Scheme

<m2n:sockets from="SolverOne" to="SolverTwo" />

<coupling -scheme:serial -implicit >

<participants first="SolverOne" second="SolverTwo" />

<max -time -windows value="2" />

<time -window -size value="1.0" />

<max -iterations value="2" />

<min -iteration -convergence -measure min -iterations="5"

data="dataOne" mesh="MeshOne" />

<exchange data="dataOne" mesh="MeshOne"

from="SolverOne" to="SolverTwo" />

<exchange data="dataTwo" mesh="MeshOne"

from="SolverTwo" to="SolverOne" />

</coupling -scheme:serial -implicit >

</solver -interface >

</precice -configuration >

Philippa Rubin Code Coupling Libraries 4 May 2021 38 / 46

preCICE solver dummies

Listing 6: solverdummy.cpp

for (int i = 0; i < numberOfVertices * dimensions; i++)

{

writeData.at(i) = readData.at(i) + 1;

}

Philippa Rubin Code Coupling Libraries 4 May 2021 39 / 46

preCICE solver dummies

Open two terminal windows, run

./ solverdummy ../ precice -config.xml SolverOne MeshOne

./ solverdummy ../ precice -config.xml SolverTwo MeshTwo

Philippa Rubin Code Coupling Libraries 4 May 2021 40 / 46

preCICE Summary

Very capable, can configure to do many things

Much more verbose to learn and implement

Main training materials are not very helpful to new users

Philippa Rubin Code Coupling Libraries 4 May 2021 41 / 46

Other Couplers Considered: OpenPALM

Projet d’Assimilation par Logiciel Multimethodes

Joint team between Cerfacs and Onera, Cerfacs also

created OASIS

Comes in two parts, prePALM and PALM

Very unreliable in this project. Unexpected behaviour

with communication between domains

Philippa Rubin Code Coupling Libraries 4 May 2021 42 / 46

Other Couplers Considered: PLE

Point Location Exchange library

Part of CodeSaturne, CFD software released by EDF

Another communication framework for code coupling

similar to MUI

Difficult to recommend to a new user, lack of

documentation in comparison to others

Philippa Rubin Code Coupling Libraries 4 May 2021 43 / 46

Comparing Performance

SolverOne SolverTwo

As coupling essentially comes down to data exchange, can

compare performance with a field exchange example

implemented in each coupler one by one

Philippa Rubin Code Coupling Libraries 4 May 2021 44 / 46

Software Outlook Technical Report

Links to most useful

training materials,

demos, usability

recommendations

Performance comparison

with 3D Field Exchange

example

Comparison of Code Coupling Libraries for High

Performance Multi-Physics Simulation

Philippa Rubin∗

Science and Technology Facilities Council, Hartree Centre, Daresbury

Laboratory, Daresbury, Warrington, WA4 4AD, United Kingdom

March 2021

Abstract

The usability and performance of code coupling libraries are compared. In this

work, MUI, MOOSE, preCICE, OpenPALM and PLE are considered. To compare

performance, a 3D field exchange example was provided by the Scientific Computing

Department at STFC. It is intended that this is a su�ciently general example to

ensure this work applied to a wider range of the UK’s Computational Collaborative

Projects and High-End Computing Consortia.

1 Introduction

As available computational power increases, there is a growing interest in the use of

large-scale multi-physics solvers in a range of life science, physical science and engineering

projects. In most cases, a single solver will not o↵er all of the required capabilities and

so a coupling framework is required to translate data between solvers and co-ordinate

their separate calculations. A number of code coupling libraries have been developed,

and over the course of this project’s work many of them ran their first ever training

workshops and have gained more and more support. Many have reached a level of maturity

for us to compare their attributes and performance when used on large-scale problems.

This document walks through some of the available code coupling libraries, followed by a

performance comparison with a 3D field exchange example.

∗philippa.rubin@stfc.ac.uk

1

Philippa Rubin Code Coupling Libraries 4 May 2021 45 / 46

Code Coupling Libraries for High

Performance Multi-Physics Simulation

SCD Seminar Series: Code Coupling

Philippa Rubin

4 May 2021

Philippa Rubin Code Coupling Libraries 4 May 2021 46 / 46

