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Overview

 Liverpool system,
Barkla

 Procurement, hardware,
user buy in, Dell / Alces
and AWS tie-in

« Liverpool use cases on
AWS in 2018

- Lessons learned = B {4

e —

* Future ideas — why it is cloud services and not just cloud
hardware
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One page procurement overview

- Barkla purchased and
commissioned in 2017.

* Dell collaborated with Alces
and AWS to win.

« Backbone of 96 nodes with
twin 6138 processors and
384GB memory.

« Strong researcher buy in —
67 of now 111 nodes. Charles Glover Barkla

Nobel Prize in Physics, 1917

for X-ray spectroscopy
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Liverpool tendered for new HPC in 2017

« Essential to see tangible research impact.

« University wanted new system to align with University
strategic objectives.

* Doubling of system size planned Q3 2018 (now Q3
2019)

« Additionally, tender panel wanted to get basics

correct:
» Modern core hardware and software infrastructure
« Support for new / non-traditional HPC users (e.g. Deep Learning)
» Make it easier to use the cluster to analyse data
* Reduce complexity of using / managing the cluster
» Provide cost effective basis for researcher hardware
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And the winner was...

« Dell EMC / Alces with some strong collaboration and
funding from Amazon Web Services (AWS).

* Winning factors from the Panel’s point of view:
« Excellent amount of hardware available.

» Addressed all of the core and most of the highly desirable parts of
the tender.

* Brought in AWS sponsorship and financial support.

* Presented a coherent hardware / software offering that would
provide an excellent basis for the future.

DALEMC
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Hardware details

« Compute nodes consist mainly of C6400 enclosures

each with 4 C6420 sleds (nodes) — now 111 of these

* Primary nodes: twin SP 6138 processors (20 cores, 2GHz), 384 GB
memory, 960 GB SSD

e Supporting nodes include:
* (C4130 GPU node with quad p100s and dual E5-2650 v4
processors (quad v100 node on order)

« Two large memory nodes: R640 servers with SP 6138 processors
and 1152 GB memory

» C6400 enclosure with 4 C6320P sleds with Xeon Phi-7230
processors, 192 GB memory

 NFS and Lustre file systems based around PowerVault MD3060e,
MD3460, and MD3420 storage shelves. (So 360 TB Lustre and
500TB of NFS storage)
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Research Groups

« Main Barkla research groups (top 25 users) come

from:
* Chemistry — 3 groups bought 46 nodes
« Engineering — 2 groups bought 13 nodes
« Mathematical Sciences — 1 group bought 8 nodes
* Ocean Modelling — looking to buy nodes on next expansion
« Electrical Engineering — diverse hardware interests

« Main nodes busy most days (although some spare
cores)

« Most bioinformatics work takes place on our Bull
(SandyBridge) cluster and Windows Condor pool.
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Software and cloud detalls

« System software and support via Alces Software.

 SLURM is the job scheduler
« Liverpool manage the scheduler,
» Alces manage user creation, system support and maintenance

« Environment nearly identical to the Alces Flight
environment available on several public clouds.

« AWS provided some research credits to experiment
with bursting and other cloud related work.
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Why was AWS involvement so attractive?

« Alces Flight provided a nearly seamless route onto
the cloud from our cluster.

« AWS makes it easier to provide non-conventional
compute to new users.

* Research credits encouraged experimentation
without fear.
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Expected cloud scenarios

* Cloud bursting — more cycles needed for a short
period
 typically for papers or presentations

« Specialised software environment
« Hadoop, other Big Data

« High throughput workflows

« Current Windows Condor pool limited to circa 8 hr jobs

e Scoping studies
» | think | need X cores and Y GB of memory for my research

 GPU nodes for Deep Learning
« Avoiding large data transfers in this first instance
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Cloud bursting - 1

* An existing Condor pool can be

extended easily to the cloud.

« Users just request the cloud resource on
local Condor server — acts as scheduler.

« Customise a standard AWS Linux image
with necessary extra software and then
save this image so is ready to go.

* Have an in-cloud manager that deploys
compute images; liaison with scheduler. « Test that target

« Spot market makes the compute even Instances are

moreF.cost-efffeIctlv.eh o | |' good enough
its perfectly with Condor cycle stealing Micro instances may

idea
be too slow so more
expensive for compute
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How this can work...

* Researcher came to us in May with an urgent request
to run 100,000 simulations related to a paper under

review.
« Our AWS Condor pool ideal.

« Cost per simulation cheapest
on t2.medium, but fastest on
c4.large or c5.large.

* Final set up: Paper resubmitted on time!

« 1000 jobs with 100 simulations each, pool size of 400 (so 400 jobs
at once) completed task in 7h 21m. Serially would need about 98
days — massive speed-up.

* Price $51.16
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Bit more on this research

* Quick pitch for the sort of research going on in the
UK.

« Bluetongue is a potentially devastating disease of
cattle and sheep.

« UK outbreak in 2007 was not as severe as it could
have been. Why???

« Epidemiologists modelled disease spread scenarios
looking at temperature, farm density and foot and
mouth disease movement restrictions.

« All had an impact on reducing the spread of this
disease.
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alcesflight
 Alces Flight can spin up compute clusters with a

familiar environment fairly painlessly.

« Main login node and storage are from on-demand
Instances so they are always there.

« Compute nodes can be spot instances and Alces
Flight provides autoscaling so compute nodes do not
sit idly waiting for work.

« Users can get their own private cluster or a cluster
that a group can use with shared storage and login
node.

« Some AWS instances now support fast MPI!

Cloud bursting - 2
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How this can work...

UNIVERSITY OF

Collaborative group at Liverpool / Manchester have a
scalable code for gait analysis — starts from skeleton.

Uses a client / server model — modest interconnect
demands.

Their demand for compute is open-ended.

Experiment - Can they use several hundred cores
over a couple of weeks to get somethlng useful
produced? —— |
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Results...

* Exposed the reality of doing experiments...

* Qverjoyed at having their own cluster on the cloud
» |deal environment for development and testing

« Unfortunately, some bugs were revealed in testing
the new animal model, so not as much useful
computation took place as desired.

* Results provided pilot data and basic validation
figures for a grant proposal

 Circa 6230 instance hours were used

« But we showed Alces Flight could bring a lot of
compute to bear easily and quickly.
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Teaching an alligator to walk has issues
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Specialised software - 1

« Often requests come in for
access to Big Data frameworks.

« Difficult to provide on a

production cluster. S 7
 Much easier to point them to \ 4
AWS EMR (Elastic Map \ /
\ /
Reduce)
* Focus is on relevant [AWZ”‘[’ ©
components and problem F=N_¢.
p p ==zl

solving not on its
Implementation!!
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Specialised software - 2

« User requested a Windows environment on the local
cluster.

* Requires annual Windows server licence
 AWS occasional use might be cheaper!

« What is actually required?
* Number of cores / memory / other software

e Spun up Windows server easily on EC2

 Remote console access immediately started with
desktop environment.

* Quickly realised key package works on Windows
desktop but not Windows server — back to vendor!
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Deep neural nets - 1

hidden layer 1 hidden layer 2 hidden layer 3

input laver

2 See
e Michael
oy . ’
S Nielsen’s
ebook on
Neural
v Networks
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* Not just lots of layers — different layers have

specific and different functions

* Find functions and weights on edges that give “best” fit of
computed outputs to actual outputs from training inputs.
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http://michaelnielsen.org/
http://neuralnetworksanddeeplearning.com/chap5.html

Deep neural nets - 2

« There are several optimisation problems embedded

In a neural net problem

* Network definition - How define the correct operators (often with
their own parameters) to act at different layers of the network.

* What are the “best” weights on edges that connect neurons
(nodes).

« Typically obtain candidate weights by optimising across a set of
input data with known outputs (training data)

» Validate / test a “trained” network with separate data

« AWS services can help with above (later), but also
there are Deep Learning EC2 instances.

 l|deal for those at development stage.
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Medicine — convolutional neural net (CNN)

« Diagnose medical images for a range of eye diseases
«  GPU memory and speed are issues here — K80 — 15 minutes for
2000 images; v100 down to 2.5 minutes — trivial set-up on AWS

Conv3 Conv10

Batch », Fully Connected
Normalisation .. Output

"\“’ - .":. -
e

Avg Pooling pooling 1024
252X3%3 Slax3ne

Image

64%3 X3 128X3X3

A typical Neural Network




Required image detall poses problems

10M pixel raw retina image. Original size 3888 x 2592

57x pixel down-sampling required to
achieve CNN ‘suitable’ image size

—_—> @

512 x 341 Image

Idea — convert to frequency
domain via FFTs

e
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Deep Learning @ Liverpool

Range of maturity in developments
» Are their network designs suitable?

* |s there enough representative data to train and test?
Down-sampling can destroy required information!

« Potential / need for augmented data?
New / unusual user groups are appearing
Single GPU node quickly overwhelmed,

« Awkward situation where one node is not enough for some groups
to get started — AWS really helps.

Need to provide several levels of service
»  Workflows with coupled DL and HPC are complicated
* New users totally flummoxed by HPC command line
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Challenges - general issues

« Classical learning curve problems

* Do people understand enough about the frameworks used to define
sensible models?

« Is there enough data of sufficiently high quality for training and
validation?

* Has enough thought gone into using the model in production (i.e.
inference) and what about its life cycle (future training /
modification)?

« What is the best environment for new users to start

down the Machine Learning road?

 AWS SageMaker very promising and Azure has its own ML
environment — ideally start with on-premise hardware and burst?
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Challenges — system side

GPU nodes are expensive and hot
* How keep them busy?

Deep Learning cycles are bursty
« How many GPUs are enough?
» Hybrid cloud solutions a big help here

Some DL problems involve a lot of data

« Data storage, security, coping with hybrid cloud
« Data ingest in a GPU often a bottleneck — IBM Newell (AC922) ?

What environment is best for DL users?
« SageMaker — focussed on the user’s problem
« Deep Learning EC2 instances — for the more experienced
» Alces Flight — hybrid cloud; good for a group of users
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Conclusions

* Working on AWS an eye-opening experience.
« Some learning curve with the EC2 and with S3 storage

« Started with Alces Flight clusters and spinning
specialised instances on EC2 (e.g. Condor in the
cloud).

« Just creating instances with keys for particular groups is great for
small numbers of groups, but it does not scale.

« Can get major additional benefits to an on premise
HPC.

e QOther use cases for 2019:

« Seamless cloud access from Barkla
» Replication of some Barkla functionality in the cloud
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BUT that misses a big cloud benefit

* Clouds can provide scalable environments that focus
on the user’s real underlying problem.

« Services like SageMaker and Elastic Map Reduce
allow researchers to focus on their problem, not the
Implementation of the solution.

« When greater expertise has been gained, lower-level
hybrid cloud services like Flight come into their own.

« How do we make life easier for our researchers??

» They don’t care about on-premise or cloud unless they are paying
the bills.
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FINALLY, there are still limitations

« There is still the capital vs. recurrent argument at
most universities.

« Costs can escalate, particularly for GPU instances.

* Cloud storage can be useful, but that locks you Iin to
a vendor.

* Need a good accounting framework so can assign
budgets to groups.

« Want to hide the complexity of deploying onto a cloud
from users, but want to avoid cutting own throat
scenario.
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