Liverpool University - Stepping to Hybrid HPC. The Barkla Cluster & Cloud

Cliff Addison and Wil Mayers

Overview

- Liverpool system, Barkla
 - Procurement, hardware, user buy in, Dell / Alces and AWS tie-in
- Liverpool use cases on AWS in 2018
- Lessons learned

One page procurement overview

- Barkla purchased and commissioned in 2017.
- Dell collaborated with Alces and AWS to win.
- Backbone of 96 nodes with twin 6138 processors and 384GB memory.
- Strong researcher buy in –
 67 of now 111 nodes.



Charles Glover Barkla Nobel Prize in Physics, 1917 for X-ray spectroscopy

Liverpool tendered for new HPC in 2017

- Essential to see tangible research impact.
- University wanted new system to align with University strategic objectives.
- Doubling of system size planned Q3 2018 (now Q3 2019)
- Additionally, tender panel wanted to get basics correct:
 - Modern core hardware and software infrastructure
 - Support for new / non-traditional HPC users (e.g. Deep Learning)
 - Make it easier to use the cluster to analyse data
 - Reduce complexity of using / managing the cluster
 - Provide cost effective basis for researcher hardware

And the winner was...

- Dell EMC / Alces with some strong collaboration and funding from Amazon Web Services (AWS).
- Winning factors from the Panel's point of view:
 - Excellent amount of hardware available.
 - Addressed all of the core and most of the highly desirable parts of the tender.
 - Brought in AWS sponsorship and financial support.
 - Presented a coherent hardware / software offering that would provide an excellent basis for the future.

Hardware details

- Compute nodes consist mainly of C6400 enclosures each with 4 C6420 sleds (nodes) – now 111 of these
 - Primary nodes: twin SP 6138 processors (20 cores, 2GHz), 384 GB memory, 960 GB SSD
- Supporting nodes include:
 - C4130 GPU node with quad p100s and dual E5-2650 v4 processors (quad v100 node on order)
 - Two large memory nodes: R640 servers with SP 6138 processors and 1152 GB memory
 - C6400 enclosure with 4 C6320P sleds with Xeon Phi-7230 processors, 192 GB memory
 - NFS and Lustre file systems based around PowerVault MD3060e, MD3460, and MD3420 storage shelves. (So 360 TB Lustre and 500TB of NFS storage)

Research Groups

- Main Barkla research groups (top 25 users) come from:
 - Chemistry 3 groups bought 46 nodes
 - Engineering 2 groups bought 13 nodes
 - Mathematical Sciences 1 group bought 8 nodes
 - Ocean Modelling looking to buy nodes on next expansion
 - Electrical Engineering diverse hardware interests
- Main nodes busy most days (although some spare cores)
- Most bioinformatics work takes place on our Bull (SandyBridge) cluster and Windows Condor pool.

Software and cloud details

- System software and support via Alces Software.
 - SLURM is the job scheduler
 - Liverpool manage the scheduler,
 - Alces manage user creation, system support and maintenance
- Environment nearly identical to the Alces Flight environment available on several public clouds.
- AWS provided some research credits to experiment with bursting and other cloud related work.

Why was AWS involvement so attractive?

- Alces Flight provided a nearly seamless route onto the cloud from our cluster.
- AWS makes it easier to provide non-conventional compute to new users.
- Research credits encouraged experimentation without fear.

Expected cloud scenarios

- Cloud bursting more cycles needed for a short period
 - typically for papers or presentations
- Specialised software environment
 - Hadoop, other Big Data
- High throughput workflows
 - Current Windows Condor pool limited to circa 8 hr jobs
- Scoping studies
 - I think I need X cores and Y GB of memory for my research
- GPU nodes for Deep Learning
- Avoiding large data transfers in this first instance

Cloud bursting - 1

- An existing Condor pool can be extended easily to the cloud.
 - Users just request the cloud resource on local Condor server – acts as scheduler.
 - Customise a standard AWS Linux image with necessary extra software and then save this image so is ready to go.
 - Have an in-cloud manager that deploys compute images; liaison with scheduler.
 - Spot market makes the compute even more cost-effective
 - Fits perfectly with Condor cycle stealing idea

Test that target instances are good enough
Micro instances may be too slow so more expensive for compute

How this can work...

 Researcher came to us in May with an urgent request to run 100,000 simulations related to a paper under review.

- Our AWS Condor pool ideal.
- Cost per simulation cheapest on t2.medium, but fastest on c4.large or c5.large.

Paper resubmitted on time!

- 1000 jobs with 100 simulations each, pool size of 400 (so 400 jobs at once) completed task in 7h 21m. Serially would need about 98 days massive speed-up.
- Price **\$51.16**

Bit more on this research

- Quick pitch for the sort of research going on in the UK.
- Bluetongue is a potentially devastating disease of cattle and sheep.
- UK outbreak in 2007 was not as severe as it could have been. Why???
- Epidemiologists modelled disease spread scenarios looking at temperature, farm density and foot and mouth disease movement restrictions.
- All had an impact on reducing the spread of this disease.

alcesflight

Cloud bursting - 2

- Alces Flight can spin up compute clusters with a familiar environment fairly painlessly.
- Main login node and storage are from on-demand instances so they are always there.
- Compute nodes can be spot instances and Alces
 Flight provides autoscaling so compute nodes do not
 sit idly waiting for work.
- Users can get their own private cluster or a cluster that a group can use with shared storage and login node.
- Some AWS instances now support fast MPI!

How this can work...

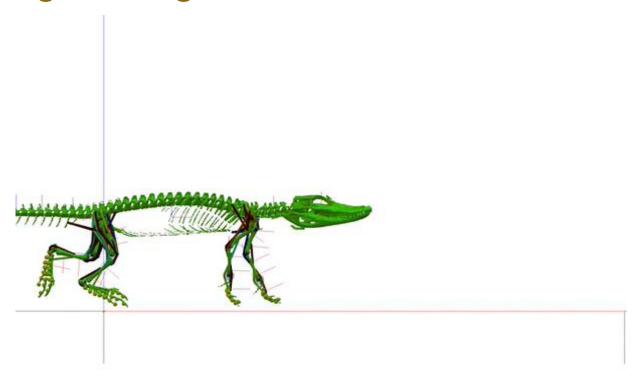
- Collaborative group at Liverpool / Manchester have a scalable code for gait analysis – starts from skeleton.
- Uses a client / server model modest interconnect demands.
- Their demand for compute is open-ended.

 Experiment - Can they use several hundred cores over a couple of weeks to get something useful

Results...

- Exposed the reality of doing experiments...
- Overjoyed at having their own cluster on the cloud
 - Ideal environment for development and testing
- Unfortunately, some bugs were revealed in testing the new animal model, so not as much useful computation took place as desired.
- Results provided pilot data and basic validation figures for a grant proposal
- Circa 6230 instance hours were used
- But we showed Alces Flight could bring a lot of compute to bear easily and quickly.

Teaching an alligator to walk has issues

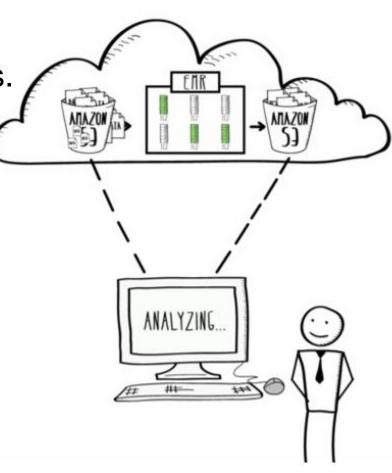


Specialised software - 1

 Often requests come in for access to Big Data frameworks.

Difficult to provide on a production cluster.

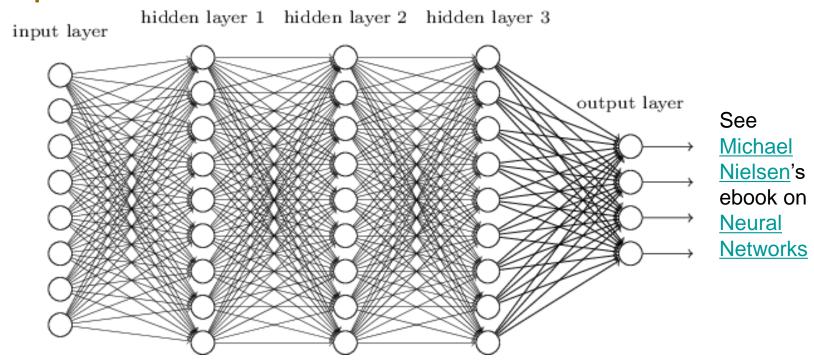
- Much easier to point them to AWS EMR (Elastic Map Reduce)
- Focus is on relevant components and problem solving not on its implementation!!



Specialised software - 2

- User requested a Windows environment on the local cluster.
- Requires annual Windows server licence
 - AWS occasional use might be cheaper!
- What is actually required?
 - Number of cores / memory / other software
- Spun up Windows server easily on EC2
- Remote console access immediately started with desktop environment.
- Quickly realised key package works on Windows desktop but not Windows server – back to vendor!

Deep neural nets - 1



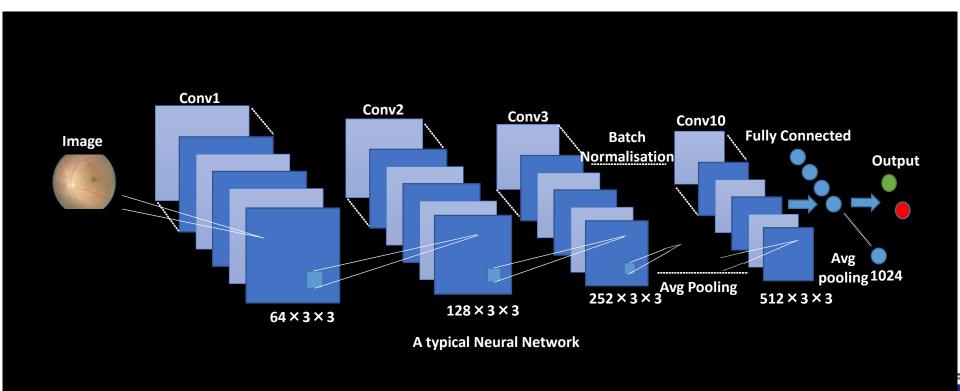
- Not just lots of layers different layers have specific and different functions
 - Find functions and weights on edges that give "best" fit of computed outputs to actual outputs from training inputs.

Deep neural nets - 2

- There are several optimisation problems embedded in a neural net problem
 - Network definition How define the correct operators (often with their own parameters) to act at different layers of the network.
 - What are the "best" weights on edges that connect neurons (nodes).
 - Typically obtain candidate weights by optimising across a set of input data with known outputs (training data)
 - Validate / test a "trained" network with separate data
- AWS services can help with above (later), but also there are Deep Learning EC2 instances.
- Ideal for those at development stage.

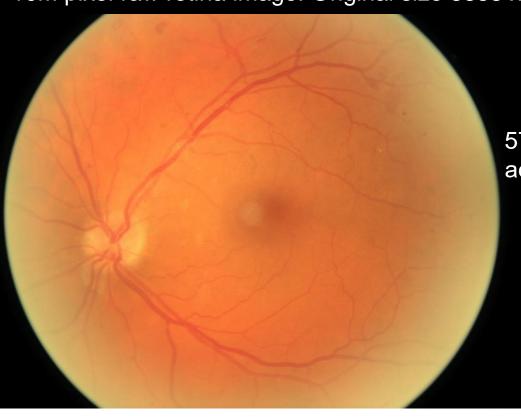
Medicine – convolutional neural net (CNN)

- Diagnose medical images for a range of eye diseases
 - GPU memory and speed are issues here K80 15 minutes for 2000 images; v100 down to 2.5 minutes – trivial set-up on AWS



Required image detail poses problems

10M pixel raw retina image. Original size 3888 x 2592



57x pixel down-sampling required to achieve CNN 'suitable' image size

Idea – convert to frequency domain via FFTs

Deep Learning @ Liverpool

- Range of maturity in developments
 - Are their network designs suitable?
 - Is there enough representative data to train and test?
 - Down-sampling can destroy required information!
 - Potential / need for augmented data?
- New / unusual user groups are appearing
- Single GPU node quickly overwhelmed;
 - Awkward situation where one node is not enough for some groups to get started – AWS really helps.
- Need to provide several levels of service
 - Workflows with coupled DL and HPC are complicated
 - New users totally flummoxed by HPC command line

Challenges - general issues

- Classical learning curve problems
 - Do people understand enough about the frameworks used to define sensible models?
 - Is there enough data of sufficiently high quality for training and validation?
 - Has enough thought gone into using the model in production (i.e. inference) and what about its life cycle (future training / modification)?
- What is the best environment for new users to start down the Machine Learning road?
 - AWS SageMaker very promising and Azure has its own ML environment – ideally start with on-premise hardware and burst?

Challenges – system side

- GPU nodes are expensive and hot
 - How keep them busy?
- Deep Learning cycles are bursty
 - How many GPUs are enough?
 - Hybrid cloud solutions a big help here
- Some DL problems involve a lot of data
 - Data storage, security, coping with hybrid cloud
 - Data ingest in a GPU often a bottleneck IBM Newell (AC922) ?
- What environment is best for DL users?
 - SageMaker focussed on the user's problem
 - Deep Learning EC2 instances for the more experienced
 - Alces Flight hybrid cloud; good for a group of users

Conclusions

- Working on AWS an eye-opening experience.
 - Some learning curve with the EC2 and with S3 storage
- Started with Alces Flight clusters and spinning specialised instances on EC2 (e.g. Condor in the cloud).
 - Just creating instances with keys for particular groups is great for small numbers of groups, but it does not scale.
- Can get major additional benefits to an on premise HPC.
- Other use cases for 2019:
 - Seamless cloud access from Barkla
 - · Replication of some Barkla functionality in the cloud

BUT that misses a big cloud benefit

- Clouds can provide scalable environments that focus on the user's real underlying problem.
- Services like SageMaker and Elastic Map Reduce allow researchers to focus on their problem, not the implementation of the solution.
- When greater expertise has been gained, lower-level hybrid cloud services like Flight come into their own.
- How do we make life easier for our researchers??
 - They don't care about on-premise or cloud unless they are paying the bills.

FINALLY, there are still limitations

- There is still the capital vs. recurrent argument at most universities.
- Costs can escalate, particularly for GPU instances.
- Cloud storage can be useful, but that locks you in to a vendor.
- Need a good accounting framework so can assign budgets to groups.
- Want to hide the complexity of deploying onto a cloud from users, but want to avoid cutting own throat scenario.

