# Arm Developments in HPC

CIUK 2018, Manchester

Dr. Oliver Perks (olly.perks@arm.com) 12<sup>th</sup> December 2018

arm

\* \* \* \* \* \* \* \* \* \* \* \* \* \*



+ + + + + +

\* \* \* \* \* \* \* \*

\* \* \* \* \* \* \* \*

of the world's population uses Arm technology

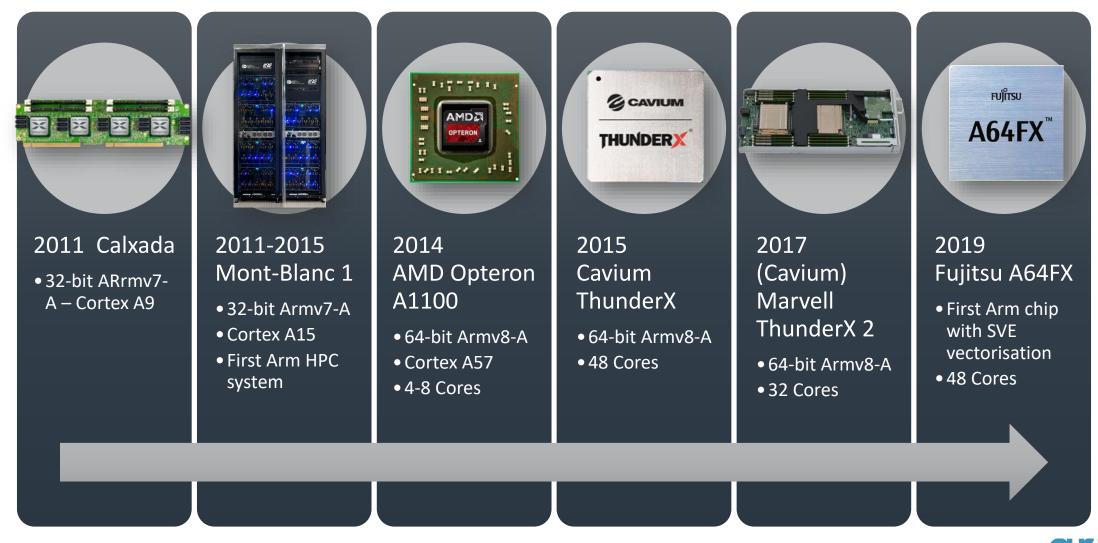
\* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

\* \* \* \* \* \* \* \* \* \* \* \* \*

+ + + + + + + + + + +



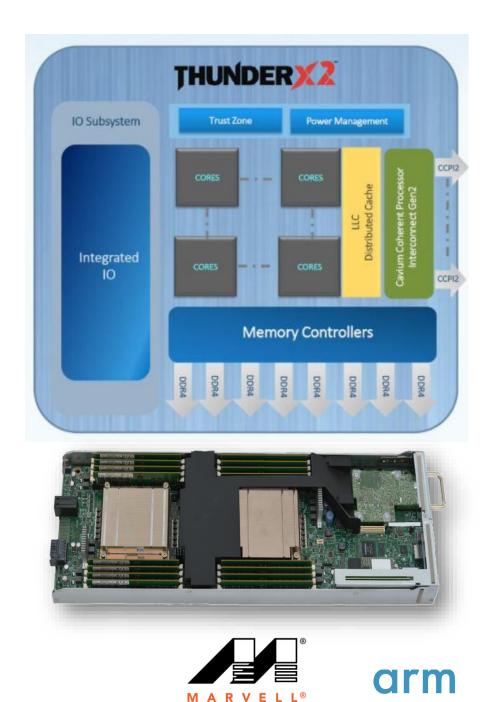
© 2018 Arm Limited


+ + + + + + + + + + +

# HPC Processors and Deployments

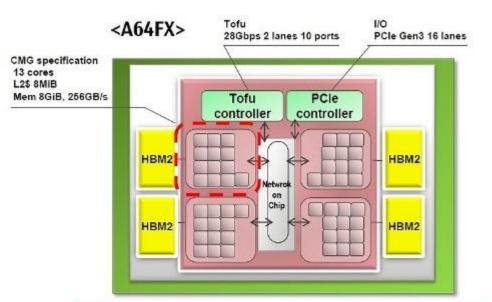
+ + + + + + + + + + + + +

+ + + + + + + + + + + + + +


## History of Arm in HPC: A Busy Decade



# Marvell ThunderX2 CN99XX


- Marvell's next generation 64-bit Arm processor
  - Taken from Broadcom Vulcan
- 32 cores @ 2.2 GHz (other SKUs available)
  - 4 Way SMT (up to 256 threads / node)
  - Fully out of order execution
  - 8 DDR4 Memory channels (~250 GB/s Dual socket)
    - Vs 6 on Skylake
- Available in dual SoC configurations
  - CCPI2 interconnect
  - 180-200w / socket
- No SVE vectorisation
  - 128-bit NEON vectorisation





## Fujitsu A64FX

- Chip designed for RIKEN POST-K machine
- 48 core 64-bit Armv8 processor
  - + 4 dedicated OS cores
- With SVE vectorisation
  - 512 bit vector length
- 32 GB HBM2
  - No DDR
  - 1 TB/s bandwidth
- TOFU 3 interconnect



|                  | A64FX<br>(Post-K) | SPARC64 XIfx<br>(PRIMEHPC FX100) |
|------------------|-------------------|----------------------------------|
| ISA (Base)       | Armv8.2-A         | SPARC-V9                         |
| ISA (Extension)  | SVE               | HPC-ACE2                         |
| Process Node     | 7nm               | 20nm                             |
| Peak Performance | >2.7TFLOPS        | 1.1TFLOPS                        |
| SIMD             | 512-bit           | 256-bit                          |
| # of Cores       | 48+4              | 32+2                             |
| Memory           | HBM2              | HMC                              |
| Memory Peak B/W  | 1024GB/s          | 240GB/s x2 (in/out)              |

# Deployments: Isambard @ GW4 arm EPSRC

- **10,752** Armv8 cores (168 x 2 x 32)
  - Cavium ThunderX2 32core 2.1GHz
- Cray XC50 'Scout' form factor
- High-speed Aries interconnect
- Cray HPC optimised software stack
  - CCE, Cray MPI, Cray LibSci, CrayPat, ...
  - OS: CLE (Cray Linux Environment)
- Phase 2 (the Arm part):
  - Accepted Nov 9<sup>th</sup>!



**Deployments: Catalyst** 

Arriving now!



Fulhame Catalyst system at EPCC

Deployments to accelerate the growth of the Arm **HPC** ecosystem

Dual 32-core Marvell ThunderX2 processors

**Hewlett Packard** 

Enterprise

Each machine will have:

64 HPE Apollo 70 nodes

4096 cores per system each

Mellanox InfiniBand interconnects

256GB of memory / node



**Bristol**: VASP, CASTEP, Gromacs, CP2K, Unified Model, NAMD, Oasis, NEMO, OpenIFS, CASINO, LAMMPS



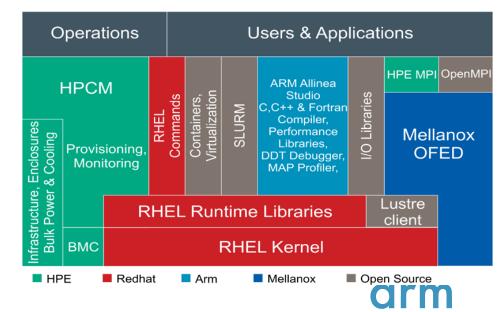
EPCC: WRF, OpenFOAM, Two PhD candidates

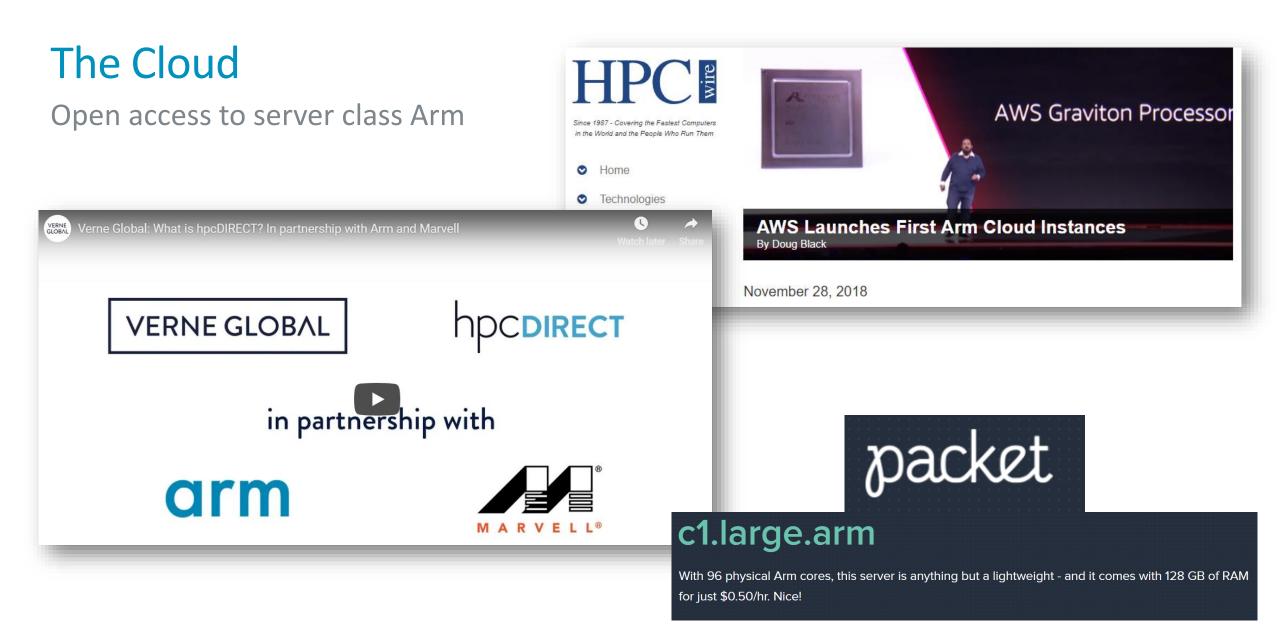


OS: SUSE Linux Enterprise Server for HPC Leicester

**Leicester**: Data-intensive apps, genomics, MOAB Torque, DiRAC collaboration




# Deployments: HPE Astra at Sandia


Mapping performance to real-world mission applications

- HPE Apollo 70
- #204 on Top500
  - 1.5 PFLOPs Rmax (2.0 PFLOPs Rpeak)
- Marvell ThunderX2 processors
  - 28-core @ 2.0 Ghz
  - 332 TB aggregate memory capacity
  - 885 TB/s of aggregate memory bandwidth
- 2592 HPE Apollo 70 nodes
  - 145, 152 cores
- Mellanox EDR InfiniBand
- OS: RedHat









+ + + + + + + + + + + + + +



# Software Ecosystem

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +



# – Easy HPC stack deployment on Arm

OpenHPC is a community effort to provide a common, verified set of open source packages for HPC deployment

### Arm and partners actively involved:

- Arm is a silver member of OpenHPC
- Linaro is on Technical Steering Committee
- Arm-based machines in the OpenHPC build infrastructure

Status: 1.3.4 release out now

- Packages built on Armv8-A for CentOS and SUSE
- <u>https://developer.arm.com/hpc/hpc-software/openhpc</u>

|    | Functional Areas                  | Components include                                                                                                                |
|----|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|    | Base OS                           | CentOS 7.4, SLES 12 SP3                                                                                                           |
| It | Administrative<br>Tools           | Conman, Ganglia, Lmod, LosF, Nagios, pdsh, pdsh-<br>mod-slurm, prun, EasyBuild, ClusterShell, mrsh,<br>Genders, Shine, test-suite |
|    | Provisioning                      | Warewulf                                                                                                                          |
|    | Resource Mgmt.                    | SLURM, Munge                                                                                                                      |
|    | I/O Services                      | Lustre client (community version)                                                                                                 |
|    | Numerical/Scientific<br>Libraries | Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre,<br>SuperLU, SuperLU_Dist,Mumps, OpenBLAS,<br>Scalapack, SLEPc, PLASMA, ptScotch  |
|    | I/O Libraries                     | HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios                                                                |
|    | Compiler Families                 | GNU (gcc, g++, gfortran), LLVM                                                                                                    |
|    | MPI Families                      | OpenMPI, MPICH                                                                                                                    |
|    | Development Tools                 | Autotools (autoconf, automake, libtool), Cmake,<br>Valgrind,R, SciPy/NumPy, hwloc                                                 |
|    | Performance Tools                 | PAPI, IMB, pdtoolkit, TAU, Scalasca, Score-P,<br>SIONLib                                                                          |

# **arm** COMPILER

### Commercial C/C++/Fortran compiler with best-in-class performance



Compilers tuned for Scientific Computing and HPC



Latest features and performance optimizations



Commercially supported by Arm

### Tuned for Scientific Computing, HPC and Enterprise workloads

- Processor-specific optimizations for various server-class Arm-based platforms
- Optimal shared-memory parallelism using latest Arm-optimized OpenMP runtime

### Linux user-space compiler with latest features

- C++ 14 and Fortran 2003 language support with OpenMP 4.5\*
- Support for Armv8-A and SVE architecture extension
- Based on LLVM and Flang, leading open-source compiler projects

### Commercially supported by Arm

 Available for a wide range of Arm-based platforms running leading Linux distributions – RedHat, SUSE and Ubuntu



# **ORD** PERFORMANCE LIBRARIES



Best-in-class performance



Commercially Supported by Arm



### Commercial 64-bit ArmV8-A math Libraries

- Commonly used low-level maths routines BLAS, LAPACK and FFT
- Optimised maths intrinsics
- Validated with NAG's test suite, a de facto standard

### Best-in-class performance with commercial support

- Tuned by Arm for specific core like TX2 and Cortex-A72
- Maintained and supported by Arm for wide range of Arm-based SoCs

### Silicon partners can provide tuned micro kernels for their SoCs

- Partners can contribute directly through open source routes
- Parallel tuning within our library increases overall application performance

# **Arm Forge Professional**

A cross-platform toolkit for debugging and profiling



Commercially supported by Arm



Fully Scalable



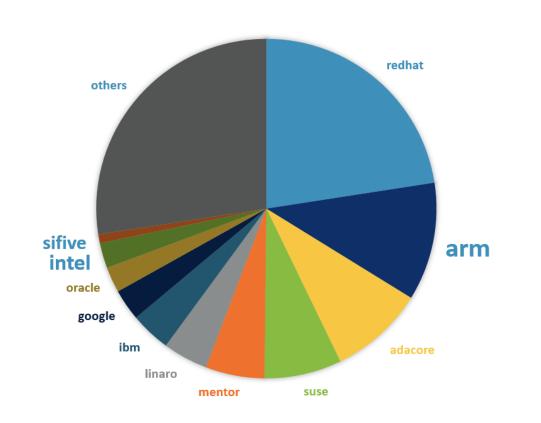
Very user-friendly

### The de-facto standard for HPC development

- Available on the vast majority of the Top500 machines in the world
- Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

- Powerful and in-depth error detection mechanisms (including memory debugging)
- Sampling-based profiler to identify and understand bottlenecks
- Available at any scale (from serial to petaflopic applications)


Easy to use by everyone

- Unique capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

## GCC is a major compiler in the Arm ecosystem

Arm the second largest contributor to the GCC project

- On Arm, GCC is a first class compiler alongside commercial compilers.
   GCC ships with Arm Compiler for HPC
- SVE support since GCC 8.0
- NEON, LSE, and others well supported



GCC CONTRIBUTIONS 2017-18

+ + + + + + + + + + + + + +



# Application Performance

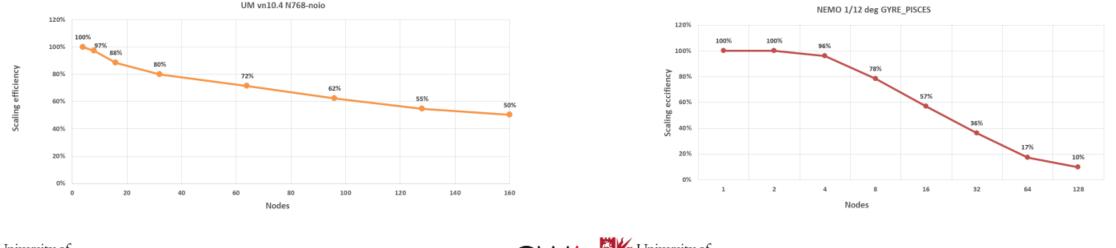
+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + +

## Single node performance results


University of BRISTOL

Broadwell 22c ■ ThunderX2 32c Skylake 20c Skylake 28c .87 $\mathbf{2}$ 7269 (normalized to Broadwell) 1.8.66 .65 1.571.6.45  $\frac{42}{2}$ .39 1.3732 1.2929 1.281.42119 161.151.151.21.060.980.92-0.760.680.8Performance 1 0.60.4-0.2Т 1 Unified Model 0 GROWNOS OpentiOAM Geometric Mean CPI - FEINO OpenShi AAM JASP

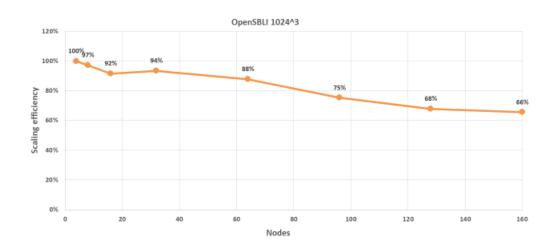
https://github.com/UoB-HPC/benchmarks

#### UM scalability, up to 10,240 cores

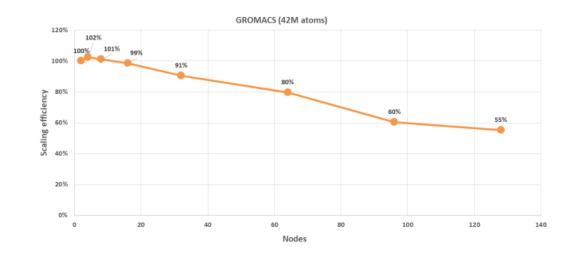
#### NEMO scalability, up to 8,192 cores






http://gw4.ac.uk/isambard/




http://gw4.ac.uk/isambard/



#### **OpenSBLI scalability, up to 10,240 cores**



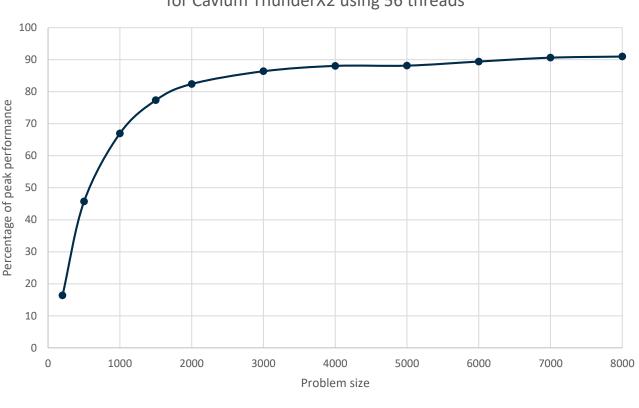
#### **GROMACS** scalability, up to 8,192 cores









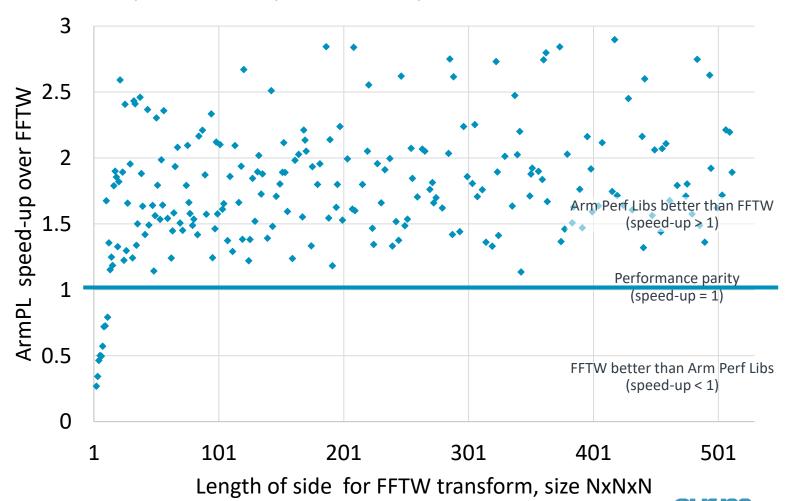

## **ArmPL: DGEMM performance**

Excellent serial and parallel performance

Achieving very high performance at the node level leveraging high core counts and large memory bandwidth

Single core performance at 95% of peak for DGEMM (not shown)

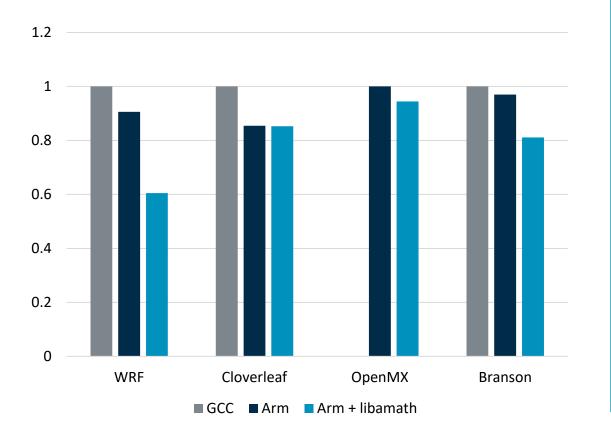
Parallel performance at 90% of peak Improved parallel performance for small problem sizes




#### Arm PL 19.0 DGEMM parallel performance improvement for Cavium ThunderX2 using 56 threads

## ArmPL 19.0 FFT 3-d complex-to-complex vs FFTW 3.3.7

- FFT timings on CTX2
  - 1-d complex-complex double precision
  - Higher means new Arm Performance Libraries FFT implementation better than FFTW 3.3.7
- •Results show:
  - Average about 30% faster than FFTW
  - Lots of this comes from better usage of vectors on CTX2
  - Cases where we are still slower are:
    - Very small (no major issue)
    - Powers of primes
    - 143, 187 and 198 times tables


Arm Performance Libraries 19.0 vs FFTW 3.3.7 Complex-to-complex double precision 3-d transforms



# Math Routine Performance

Aarch64 optimised GLIBC maths routines

### **Normalised runtime**



### **Arm PL provides libamath**

- With Arm PL (*-armpl*).
- Algorithmically better performance than standard library calls
- No loss of accuracy
- single and double precision implementations of:
   exp(), pow(), and log()
- single precision implementations of:
   sin(),cos(), sincos(), tan()

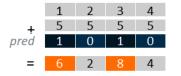
...more to come.

# **Orm Compared to the second second**

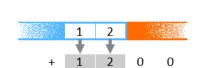
\* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

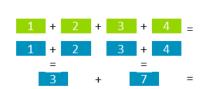
+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +


+ + + + + + + + + + + + +

## What makes it a <u>Scalable</u> Vector Extension?





### SVE does not have a fixed vector length

• Vector Length is hardware implementation choice of 128 to 2048 bits.



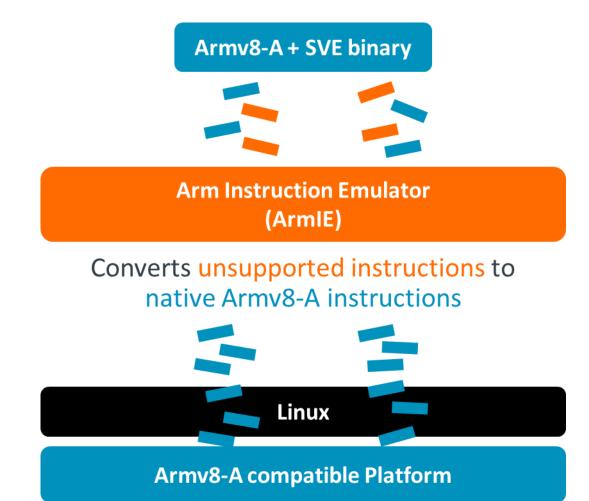






### SVE is not an extension of AArch64 128-bit Advanced SIMD (aka Neon)

- A completely new set of instructions that can scale to future generations of vector processor.
- Initial focus is HPC scientific supercomputers and machine learning


### SVE begins to remove barriers to auto-vectorization of high-level languages

- Per-lane predication on vector registers
- Compilers are often unable to vectorize code due to control and data dependencies.
- Software-managed speculative vectorization allows more code to be vectorized

# Running SVE without SVE Hardware

Arm Instruction Emulator: ArmIE

- Compilers can generate SVE
   Arm Compiler, GNU, Fujitsu, etc.
- However no hardware to actually run it on
  A64FX will be the first SVE hardware
- Need a way of understanding behaviour
  - Both compiler and application
  - Gem5 is great for hardware simulation, but slow
- ArmIE lets you test SVE vectorisation
  - With real applications
  - Emulate different vector widths





# Going Forward

| + | + | + | + | + | + | + | + | + | ÷ | + | + | ÷ | + | ÷ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

|  |  | + |  |  |  |  |  |
|--|--|---|--|--|--|--|--|
|  |  |   |  |  |  |  |  |

# The Future of Arm in HPC

What's next?

### Processors

- By more vendors
  - Marvell, Ampere, Amazon, HiSilicon, Fujitsu
- Targeting different market segments
- All built on the Arm ecosystem
- Supported by the tools

### Deployments

- Large scale and small scale deployments
- Increased exposure to the architecture
- More applications and libraries ported to Arm
   Including ISVs
- Increased community

### **Commitment from Arm**

- Neoverse IP roadmap for silicon vendors
- Investment in software ecosystem
  - E.g. F18
- Support for customers
  - Applications
  - Software
  - Performance

# Arm HPC Ecosystem website: www.arm.com/hpc

### Get involved

- News, events, blogs, webinars, etc.
- Guides for porting HPC applications
- Quick-start guides for tools
- Links to community collaboration sites
- Arm HPC Users Group (AHUG)



# 

# Come and visit us Booth #37

+ + + + +

+ + + + +

© 2018 Arm Limited + +



<sup>+</sup>The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

+ + + +

+ + + +