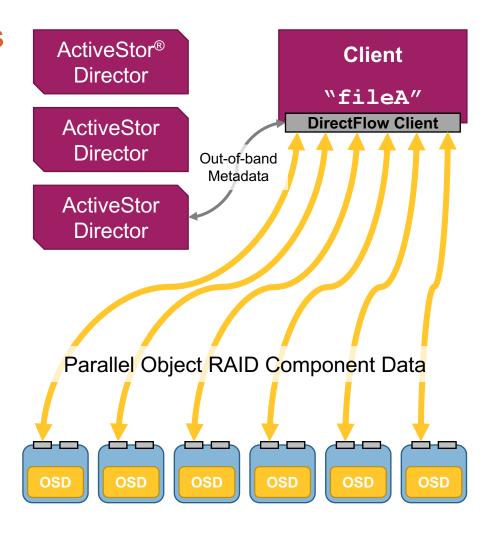


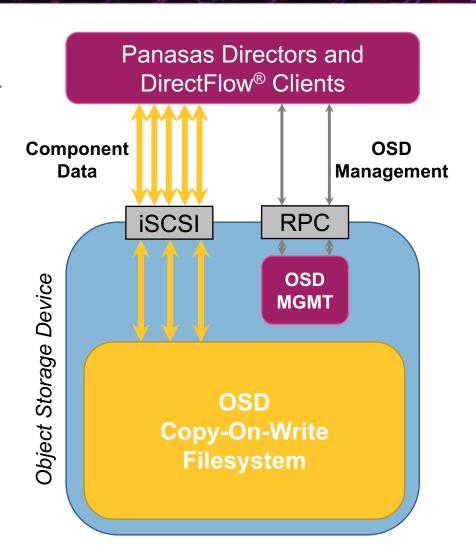
Architecture of a Next-Generation Object Storage Device in the Panasas Filesystem

Computing Insight UK 2018
December 13, 2018 - Manchester, UK

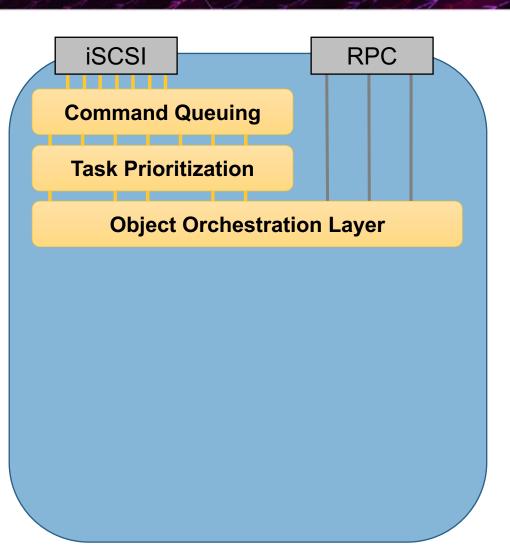

Curtis Anderson
Software Architect - Panasas, Inc.

www.Panasas.com

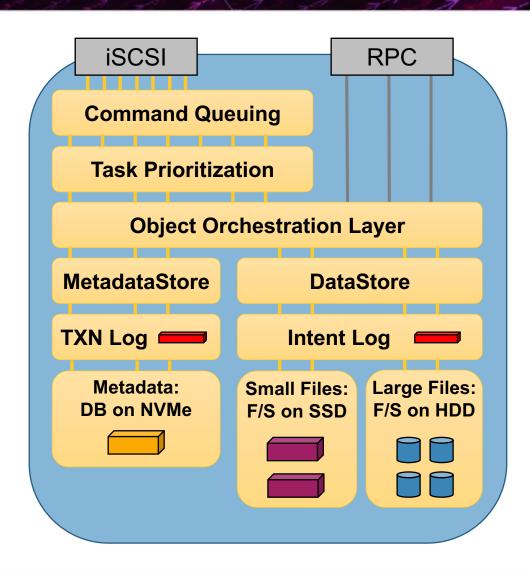
What's an Object Storage Device (OSD)?


- Out-of-band metadata management on Directors
 - B/W and IOPs scales linearly with the number of OSDs
- OSDs are our main data storage targets
 - Clients transfer data directly to/from OSDs in parallel
 - After communicating with Director(s) for metadata
 - Per Realm: 3-100s of Directors, 10s-1000s of OSDs
- OSDs enable Erasure Coded RAID per File
 - Each file is striped across Component Objects (COs)
 - N+2 Erasure Codes are just additional COs
 - At most one CO from a file on any given OSD
- OSDs all help in scale-out reconstruction
 - All N+1 OSDs are reading and writing during rebuild
 - Traditional RAID limited by B/W of replacement drive
 - Faster recon times result in higher data reliability

What's Inside an OSD?


- OSDs expose iSCSI and RPC interfaces
 - iSCSI for data transport to/from our client S/W & Director
 - RPC for health and mgmt. to/from our Director
- OSDs have an internal F/S to manage devices
 - On-disk formats, head scheduling, transactional updates
 - Internal details transparent to the rest of the architecture
- OSDs each do their own used/free space mgmt.
 - Only the OSD knows logical-to-physical placement
 - Internal details transparent to the rest of the architecture
- OSDs each do their own COW-based snapshots
 - Only the OSD knows which bytes have been COWed
 - Internal details transparent to the rest of the architecture

What is ActiveStor® Ultra?

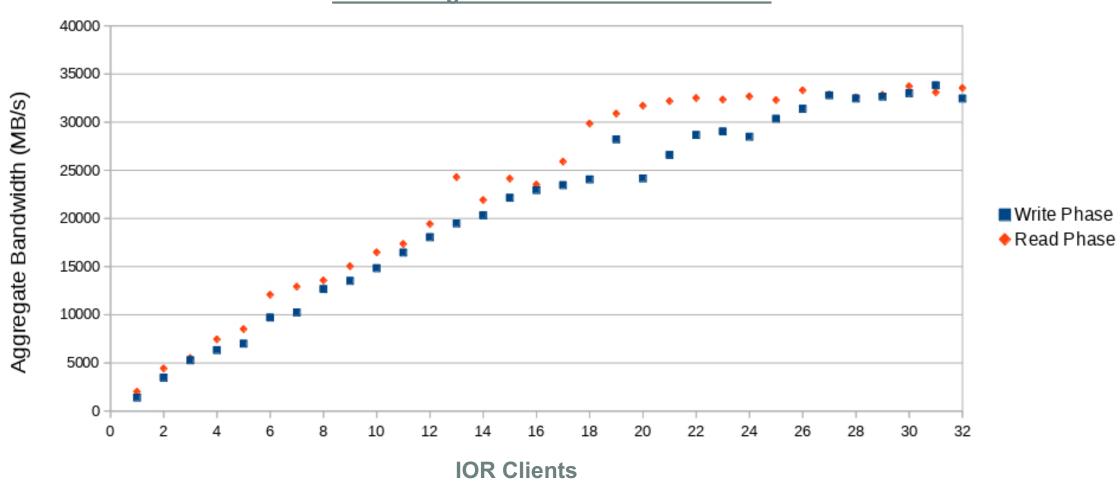

- Unchanged OSD external API (in 1st release)
 - Risk-reduction to "change one thing at a time"
 - Looks & acts the same, but runs much faster
 - PanFS[®] taught to use new OSD capabilities in future
- Uses a high-performance COTS platform
 - NVDIMMs for power-fail instead of built-in UPS
 - Choose dual 25GbE or InfiniBand ports
- Enables 'wider' and 'taller' OSDs
 - Adapt to more HDDs, and more performance tiers
 - Adapt to different ratios in the tiers for new workloads
- Modular S/W design entirely in user space
 - Running on Linux, leveraging Open Source packages

What is ActiveStor Ultra?

- Optimize storage/handling for metadata/data
 - Transaction Logs: in NVDIMM
 - Very fast and power-safe transaction completion
 - DRAM Cache: access to unmodified data/metadata
 - Metadata: in database or KVS on NVMe SSD
 - Fast transactions, consistent performance, intelligent queries
 - DB may be used for Map/Reduce data analytics in the future
 - Small Files: in COW F/S on SATA SSD
 - Cost-effective high-IOPs, consistent performance
 - Large Files: in COW F/S on SATA HDD
 - HDDs are good at delivering B/W if they only store large files
- Full data stability with fully async performance
 - NVDIMM is intent-log for data & metadata operations
 - Intent-log is layered above the COW F/S and the DB
 - Will re-execute operations in the event of an interruption
 - Allows COW F/S & DB to run full async for best perf
 - · e.g. coalesce writes into contiguous runs for later read-back perf

IOR Scaling Experiment Setup

- 1-32 DirectFlow Clients
 - 10 Core / 2x10GbE / 32GB RAM
- 32 OSDs in ActiveStor Ultra Realm
 - Each populated with 8x4TB drives
 - 2x10GbE / 16GB NVDIMM / 32GB RAM
- Single Volume Used
- RAID6+ Erasure Coding


IOR: Scale Number of Clients

- 32 tasks executed on every node, each writing or reading their own 10GB file
- Demonstrates ability to scale I/O effectively without wild fluctuations
- Full unmounts of DF client performed between write and read – barriers included

Initial Untuned Performance Scaling Results

IOR Scaling to 32 ActiveStor Ultra Nodes

ActiveStor Ultra Summary

- Starts a new era of innovation and performance for PanFS and Panasas
 - Higher Performance: Novel algorithms and intelligent use of the right storage media
 - Consistent Performance: Novel algorithms and intelligent use of the right storage media
 - Wider Choice of Platforms: Fully decoupled OSD software from the OS and hardware
 - Latest Networking and Storage Media: Adopting COTS platforms
 - Higher Density per Rack: Adopting COTS platforms
 - Improved Snapshots: Instantaneous, scalable snapshots with near-zero cooldown time
 - Higher Feature Velocity: Leveraging COTS + Open Source frees up resources
- COTS platforms allows us to focus on what we do best:

High-Performance Parallel Filesystems

