
E. Boella1, M. E. Innocenti2, M. Bettencourt3,
M. K. Chimeh3, G. Lapenta4, P. Parodi4,
N. Shukla5 and F. Spiga3

1 Lancaster University
2 Ruhr-Universität Bochum
3 NVIDIA
4 KU Leuven
5 CINECA

E. Boella | Computing Insight UK | December 2nd, 2022

ECsim:
a massively parallel Particle-In-Cell code
for plasma physics with OpenACC support

The Particle-In-Cell algorithm models the plasma microphysics

E. Boella | Computing Insight UK | December 2nd, 2022

Particle-In-Cell ↔ Particle-Mesh

Np computational particles, Ng grid cells

Dawson, Rev. Mod. Phys. 55, 403, (1983).

ECsim adopts an implicit discretisation in time for particle and field equations

E. Boella | Computing Insight UK | December 2nd, 2022
Lapenta et al., J. Plasma Phys. 83, 705830205 (2017). Lapenta, J. Comput. Phys. 334, 349 (2017).
Gonzalez-Herrero et al., Comp. Phys. Commun. 229, 162 (2018).

Explicit PICs decouple particle and field equations

E. Boella | LULI seminar | Paris, December 20th, 2017

Integration
of eq. of motion:
moving particles
Fi → vi → xi

Interpolation:
evaluating force

on particles
(Eg, Bg) → Fi

Interpolation:
calculating currents

on grid
(xi, vi) → Jg

Integration
of field eq.:

updating fields
Jg → (Eg, Bg)

Δt

* C. K. Birsdall and A. B. Langdon, Plasma physics via computer simulation.
McGraw–Hill Book Company, 1985.

Bn+1
g = Bn

g − cΔt∇g × En+θ

En+1
g = En

g + cΔt (∇g × Bn+θ −
4π
c

Jn+θ
g)

vn+1
i = vn

i + Δt
qi

mi [En+θ(xn+1/2
i) +

vi × Bn(xn+1/2
i)

c]
xn+1/2

i = xn−1/2
i + Δt vn

i

Jn+θ
g = Ĵn

g + β∑
i

qiαiEn+θ(xn+1/2
i)S(xn+1/2

i − xg) =

Jn+θ
g = Ĵn

g + β∑
i

∑
g′�

qiαiEn+θ
g′� S(xn+1/2

i − xg′�)S(xn+1/2
i − xg) =

Jn+θ
g = Ĵn

g + β∑
g′�

Mgg′�En+θ
g′�

The moment gathering is the most time consuming portion of the code

E. Boella | Computing Insight UK | December 2nd, 2022

✤ Written in C/C++
✤ Parallelised with MPI
✤ I/O via HDF5 and H5hut
✤ Uses PETSc to solve fields
✤ Built via CMake
✤ Now includes OpenACC directives

4 MPI tasks

32 MPI tasks

0E+00 2E+04 4E+04 6E+04 8E+04

Initialisation Moment Gathering Field Solver
Particle Mover I/O

Time [s]

128 x 128 cells, 6400 ppc, 596 iterations
Simulations performed on Marconi100 @CINECA (Italy)

IBM Power9 32 cores/node and 4 NVIDIA V100 GPUs/node

~80%

Porting particle mover on GPU is straightforward

E. Boella | Computing Insight UK | December 2nd, 2022

✤ updateVelocity

✤ updatePosition

✤ fixPosition

#pragma acc parallel loop

for (long long rest = 0; rest < nop; rest++) {

…

}

To solve this

cudaMemPrefetchAsync
(x, sizeof(double)*nop, 0, 0);

destination
device
GPU

Nsight System profiling of updateVelocity

Moment gathering requires atomic operations to avoid race condition

E. Boella | Computing Insight UK | December 2nd, 2022

void EMfields3D::addRho(double weight[][2][2], int X, int Y, int Z, int is) {
 for (int i = 0; i < 2; i++)
 for (int j = 0; j < 2; j++)
 for (int k = 0; k < 2; k++) {
 const double temp = weight[i][j][k];

 #pragma acc atomic update
 rhons[is][X - i][Y - j][Z - k] += temp * invVOLn[X - i][Y - j][Z - k];
 }
}

✤ computeMoments (Most time consuming routine of the code)

We managed to improve computeMoments by increasing data locality

E. Boella | Computing Insight UK | December 2nd, 2022

Load from generic memory ↓

3 input integer addition ↑

✤ In our simulation test, we reduced the
total execution time from 1511.82 s to
1496.33 s

✤ We tried to go further and unrolled loops
in the routine to increase data locality, but
we did not get any time improvement
because we increased too much the
number of registers

Nsight Compute profiling of computeMoments

Stall Long Scoreboard ↓

→

Arithmetic Intensity [FLOP/byte]

Pe
rf

or
m

an
ce

[F
LO

P/
s]

A fine tuning optimisation led to a 12% speed up of the computeMoments kernel

E. Boella | Computing Insight UK | December 2nd, 2022

Nsight System profiling of computeMoments

By offloading to GPUs the particle kernels, we achieved a 5x speedup

E. Boella | Computing Insight UK | December 2nd, 2022

4 MPI tasks

32 MPI tasks

4 GPUs + 4 MPI tasks

0E+00 2E+04 4E+04 6E+04 8E+04

Initialisation Moment Gathering Field Solver Particle Mover I/O

Time [s]

~5x speedup on Marconi100

128 x 128 cells, 6400 ppc, 596 iterations
Simulations performed on Marconi100 @CINECA (Italy)

IBM Power9 32 cores/node and 4 NVIDIA V100 GPUs/node

Weak scaling shows an efficiency of 80% up to 1024 GPUs on Marconi100

E. Boella | Computing Insight UK | December 2nd, 2022

80% efficiency up to 1024 GPUs72% efficiency up to 32 GPUs

Strong scaling Weak scaling
64 x 64 x 32 cells with 1296 ppc 128 x 128 to 2048 x 2048 cells with 6400 ppc

101 102 103
GPUs

100

101

102

103

Sp
ee
du
p

0
0.2
0.4
0.6
0.8
1

Ef
fic
ien

cy

101 102 103
GPUs

100

101

102

103

Sp
ee
du
p

0
0.2
0.4
0.6
0.8
1

Ef
fic
ien

cy

On A100, Moment Gathering becomes twice as fast as on V100

E. Boella | Computing Insight UK | December 2nd, 2022

0

225

450

675

900

Moment Gathering Particle Mover

Marconi100 Juwels Booster MeluXina

T
im

e
[s

]

Marcon100: IBM Power9 32 cores/node and 4 NVIDIA V100 GPUs/node
Juwels Booster: AMD EPYC 7402 48 cores/node and 4 NVIDIA A100 GPUs/node

MeluXina: AMD EPYC 7452 32 cores/node and 4 NVIDIA A100 GPUs/node

Summary and perspectives

E. Boella | Computing Insight UK | December 2nd, 2022

The most consuming portion of ECsim on CPU is the moment gathering where particles are deposited
onto the grid (~80% of the execution time).

By offloading only particle routines to GPU, a speedup of 5x was achieved.

ECsim shows an efficiency of 80% in weak scaling test up to 1024 GPUs.

Next step: porting the field solver to GPU.

This work was partially performed in the framework of the CSCS and CINECA OpenACC
Hackathons. We gratefully acknowledge access to Marconi100 via ISCRA and HPCEuropa3,
Juwels Booster via GCS and PRACE and MeluXina via EuroHPC.

