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ECsim:
a massively parallel Particle-In-Cell code
for plasma physics with OpenACC support



The Particle-In-Cell algorithm models the plasma microphysics
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Particle-In-Cell ↔ Particle-Mesh

Np computational particles, Ng grid cells

Dawson, Rev. Mod. Phys. 55, 403, (1983).



ECsim adopts an implicit discretisation in time for particle and field equations
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Lapenta et al., J. Plasma Phys. 83, 705830205 (2017). Lapenta, J. Comput. Phys. 334, 349 (2017).
Gonzalez-Herrero et al., Comp. Phys. Commun. 229, 162 (2018).

Explicit PICs decouple particle and field equations 

E. Boella | LULI seminar | Paris, December 20th, 2017 

Integration
of eq. of motion:
moving particles
Fi → vi → xi

Interpolation:
evaluating force

on particles
(Eg, Bg) → Fi

Interpolation:
calculating currents

on grid
(xi, vi) → Jg

Integration
of field eq.:

updating fields
Jg → (Eg, Bg)

Δt

* C. K. Birsdall and A. B. Langdon, Plasma physics via computer simulation. 
McGraw–Hill Book Company, 1985.
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The moment gathering is the most time consuming portion of the code
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✤ Written in C/C++
✤ Parallelised with MPI
✤ I/O via HDF5 and H5hut
✤ Uses PETSc to solve fields
✤ Built via CMake
✤ Now includes OpenACC directives

4 MPI tasks

32 MPI tasks
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Initialisation Moment Gathering Field Solver
Particle Mover I/O

Time [s]

128 x 128 cells, 6400 ppc, 596 iterations
Simulations performed on Marconi100 @CINECA (Italy)

IBM Power9 32 cores/node and 4 NVIDIA V100 GPUs/node

~80%



Porting particle mover on GPU is straightforward
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✤ updateVelocity 

✤ updatePosition 

✤ fixPosition

#pragma acc parallel loop 

for (long long rest = 0; rest < nop; rest++) { 

… 

}

To solve this

cudaMemPrefetchAsync 
(x, sizeof(double)*nop, 0, 0);

destination
device
GPU

Nsight System profiling of updateVelocity



Moment gathering requires atomic operations to avoid race condition
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void EMfields3D::addRho(double weight[][2][2], int X, int Y, int Z, int is) { 
  for (int i = 0; i < 2; i++) 
    for (int j = 0; j < 2; j++) 
      for (int k = 0; k < 2; k++) { 
        const double temp = weight[i][j][k]; 

        #pragma acc atomic update 
        rhons[is][X - i][Y - j][Z - k] += temp * invVOLn[X - i][Y - j][Z - k]; 
      } 
}

✤ computeMoments (Most time consuming routine of the code)



We managed to improve computeMoments by increasing data locality 
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Load from generic memory ↓

3 input integer addition ↑

✤ In our simulation test, we reduced the 
total execution time from 1511.82 s to 
1496.33 s

✤ We tried to go further and unrolled loops 
in the routine to increase data locality, but 
we did not get any time improvement 
because we increased too much the 
number of registers

Nsight Compute profiling of computeMoments
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A fine tuning optimisation led to a 12% speed up of the computeMoments kernel
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Nsight System profiling of computeMoments



By offloading to GPUs the particle kernels, we achieved a 5x speedup
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4 MPI tasks

32 MPI tasks

4 GPUs + 4 MPI tasks
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Time [s]

~5x speedup on Marconi100

128 x 128 cells, 6400 ppc, 596 iterations
Simulations performed on Marconi100 @CINECA (Italy)

IBM Power9 32 cores/node and 4 NVIDIA V100 GPUs/node



Weak scaling shows an efficiency of 80% up to 1024 GPUs on Marconi100
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80% efficiency up to 1024 GPUs72% efficiency up to 32 GPUs

Strong scaling Weak scaling
64 x 64 x 32 cells with 1296 ppc 128 x 128 to 2048 x 2048 cells with 6400 ppc
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On A100, Moment Gathering becomes twice as fast as on V100
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Marcon100: IBM Power9 32 cores/node and 4 NVIDIA V100 GPUs/node
Juwels Booster: AMD EPYC 7402 48 cores/node and 4 NVIDIA A100 GPUs/node 

MeluXina: AMD EPYC 7452 32 cores/node and 4 NVIDIA A100 GPUs/node



Summary and perspectives
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The most consuming portion of ECsim on CPU is the moment gathering where particles are deposited 
onto the grid (~80% of the execution time).

By offloading only particle routines to GPU, a speedup of 5x was achieved.

ECsim shows an efficiency of 80% in weak scaling test up to 1024 GPUs.

Next step: porting the field solver to GPU.

This work was partially performed in the framework of the CSCS and CINECA OpenACC 
Hackathons. We gratefully acknowledge access to Marconi100 via ISCRA and HPCEuropa3,
Juwels Booster via GCS and PRACE and MeluXina via EuroHPC.


