
Towards sustainable HPC at the Jülich Supercomputing Centre

CIUK 2022 | December 1, 2022 | Thomas Eickermann

Member of the Helmholtz Association

Research Centre Jülich by Numbers

Research areas

- Information
- Energy
- Bioeconomy

- Budget: 861 Mio €, including 395 Mio € third party funding 171 Horizon 2020 projects, 420 national projects
- Employees: 7.120 incl. 2.626 scientists including PhD students 934 guest scientists from 65 countries
- Publications: 3.081 (source: fact sheet 2021)

Jülich Supercomputing Centre (JSC)

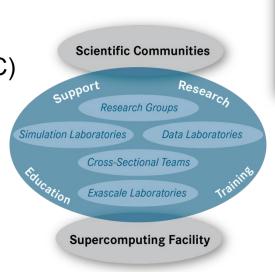
Facts and Figures

Staff:

220 Total (185 FTE)160 Scientists13 PhD Students (+13 external)

Budget:

30 Mio. € Institutional Funding (PoF)15 Mio. € Third Party Funding


Jülich Supercomputing Centre at a Glance

Supercomputer operation for

- Centre FZJ
- Region RWTH Aachen University
- Germany Gauss Centre for Supercomputing (GCS)
 John von Neumann Institute for Computing (NIC)
- Europe PRACE, EU projects, EuroHPC
- Application support
 - Unique support & research environment at JSC
 - Peer review support and coordination

R&D work

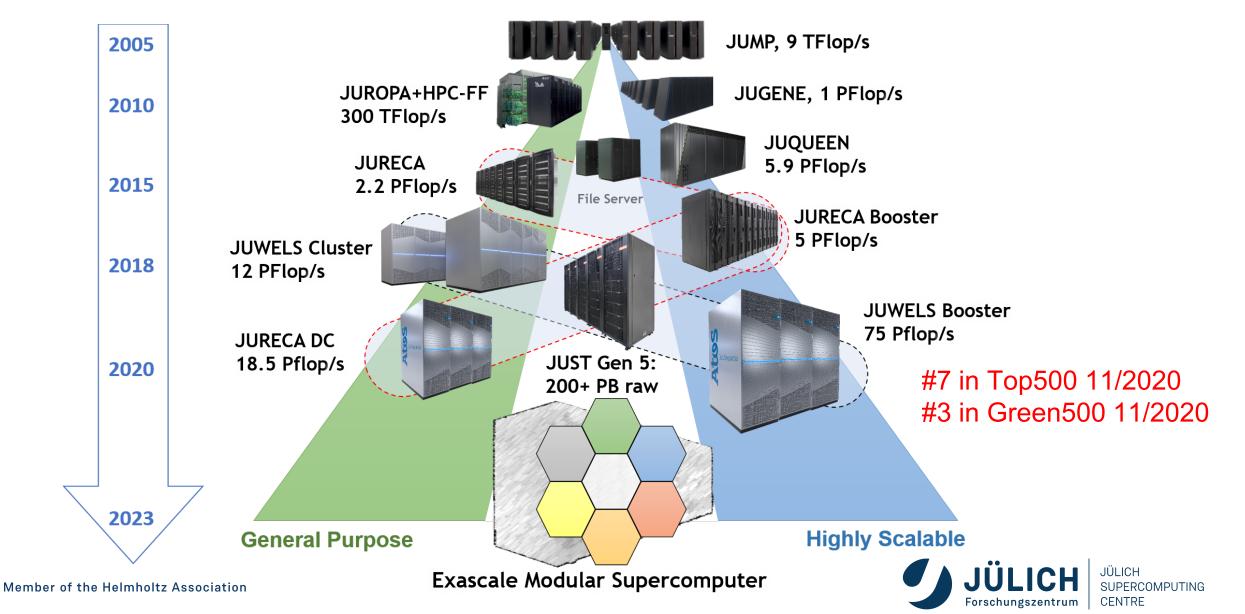
- Methods and algorithms, computational science, performance analysis and tools
- Scientific Big Data Analytics with HPC
- Computer architectures, Co-Design, Exascale Labs together with IBM, Intel, NVIDIA
- Education and training

Towards Sustainable HPC at JSC

Optimisation of Energy Usage

Campus Level

Data Centre Level

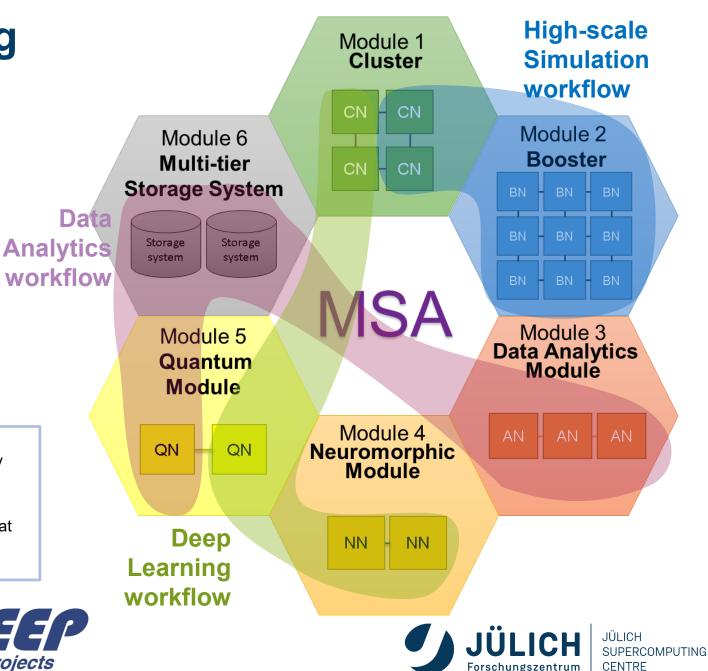


UWELS

(DUAL) hardware strategy at JSC

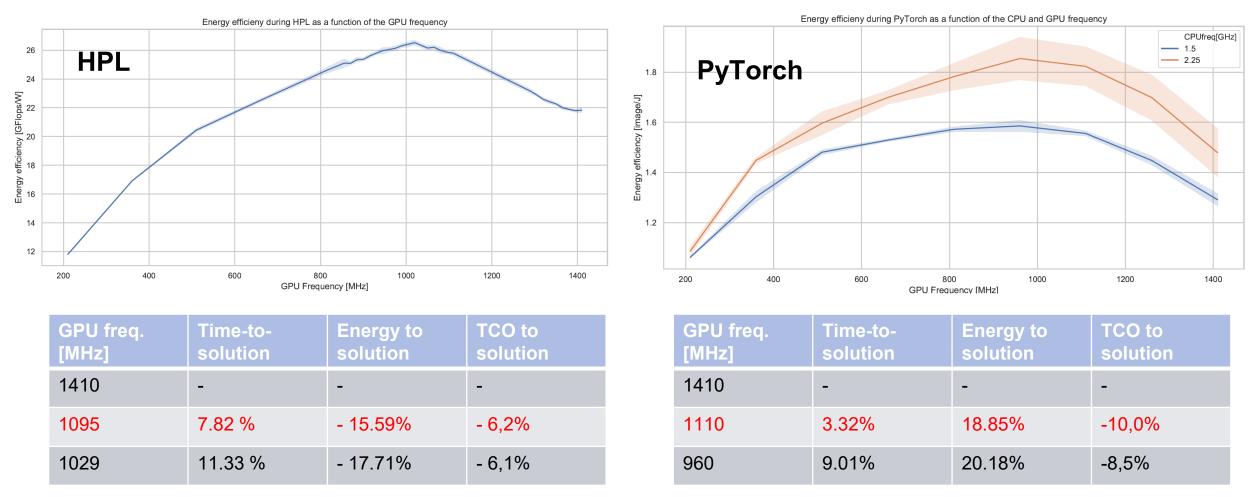
System Level

- Energy-efficient compute nodes
 - GPU accelerators boost Flops/W
- Energy-efficient system architectures
 - Many applications cannot benefit from GPUs (today)
 - Idle GPUs are not energy-efficient
 - Dual hardware strategy: General Purpose + Highly Scalable system for different demands and mixed workflows
 - 35% of JUWELS Booster projects have also allocations on the JUWELS Cluster
 - Modular Supercomputer Architecture: tight integration of heterogeneous resources


Modular supercomputing architecture

Composability of heterogeneous resources

- Cost-effective scaling
- Effective resource-sharing
- Match application diversity
- Large-scale, complex workflows


• E. Suarez, N. Eicker, Th. Lippert, "*Modular Supercomputing Architecture: from idea to production*", Chapter 9 in Contemporary High Performance Computing: from Petascale toward Exascale, Volume 3, p 223-251, CRC Press. (2019)

• E. Suarez, N. Eicker, and Th. Lippert, "Supercomputer Evolution at JSC", Proceedings of the 2018 NIC Symposium, Vol.49, p.1-12, (2018)

System Operation: Adaptation of GPU / CPU Frequencies

Measurements on JURECA-DC: 2x AMD EPIC 7742, 4x NVIDIA A100-SMX4-40GB

by Sebastian Achilles (JSC)

System Operation Cont.

GPU Frequency adaptation

- Extended test opportunities provided for JUWELS users
- No significant gain in energy-to-solution for many applications, 5-10% for some

Powering off idle nodes

- JUWELS is fully loaded, but ...
 - Scheduling a mix of small and large node-count jobs leads to idle periods
- Tested and put into production on smaller systems, incl. JURECA-DC
 - Reduced interconnect stability
 - Little impact on user experience

Data-Centre Level – Cooling

• Until 2022

- JUWELS and JURECA-DC use direct liquid cooling
- Chilled water is centrally supplied for the Jülich campus
- Coefficient of Performance ~ 2.5
- Supported by free cooling in winter

• Since May 2022

- 1.8 MW Hybrid warm-water cooling:
 - inlet ~ 34 °C outlet ~ 42 °C
- Free cooling + water evaporation in hot periods
- PUE ~ 1.1
- Extension to 3 MW is underway
- Chilled water only for air cooled components: storage, network

Research Centre Level – Waste Heat Usage

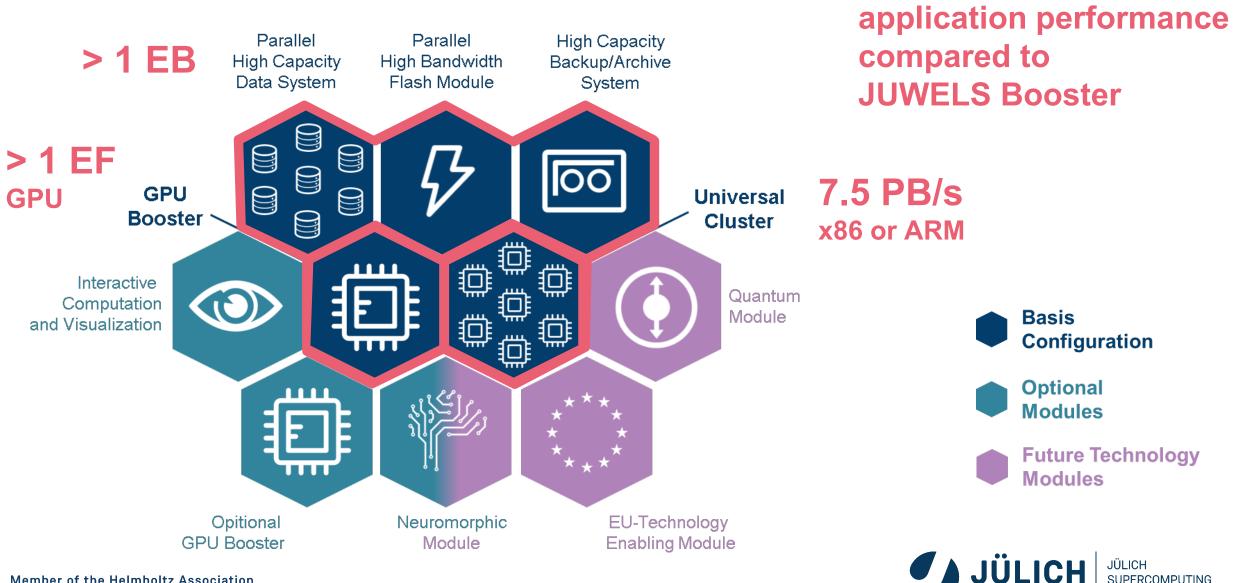
• Living Lab Energy Campus

- A project to develop and deploy an integrated campus-wide energy management
 - Renewable energy production and storage
 - Monitoring and predicting usage & steering energy production (e.g. gas-fired combined cooling, heating and power (CCHP) plant) and battery usage

Under Construction

- Low-temperature (~ 40 °C) district heating system powered by JSC waste heat
- Temperature is sufficient to directly heat buildings fulfilling current German insulation standards
- Heat pumps used to achieve temperature levels (~ 70 °C) required for older buildings – such as the JSC

JUPITER – The 1st European Exascale System



SPONSORED BY THE

- EuroHPC Joint Undertaking
 - Joint undertaking between EU, member states, private partners
 - Took over funding of HPC related projects from EC
 - Co-funds Petascale, and owns Pre-Exascale, and Exascale systems
- JUPITER JU Pioneer for Innovative and Transformative Exascale Research
 - Selected on June 14, 2022 as the 1st EuroHPC Exascale system
 - Installation in Jülich targeted for end of 2023
 - 500 Mio. € Total Costs, equally shared between EuroHPC and Germany (federal and state of North Rhine-Westfalia funding)

JUPITER – Modular Supercomputer

Target >20×

Forschungszentrum

CENTRE

JUPITER - Towards Sustainability

• JUPITER will leverage all of the above:

- Modular Supercomputer Architecture
- GPU-based booster
- Operated with green electricity
- Direct warm-water cooling
- Waste heat usage: funding secured for
 - a high-performance heat pump (> 1 MW)
 - Measures on the campus that enable broader utilization of JUPITER's waste heat
- Optimisation of energy supply
 - From: 110 kV \rightarrow 35 kV \rightarrow 10 kV \rightarrow 480 V
 - To: 110 kV \rightarrow 35 kV \rightarrow 480 V

Location of Exascale Data Centre

SPONSORED BY THE

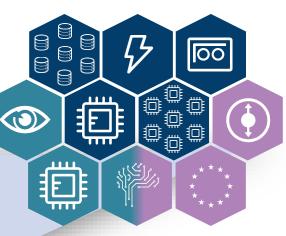
Federal Ministry of Education and Research Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Waste Heat Usage – Long-Term Vision

of energy hub

Actual energy supply 2. Mid-Term energy supply 1. • JUPITER average power ~ 15 MW EXASCAL Campus heat demand ~7.5 MW ENERGY HUB ENERGY HUB HPC waste heat supply to campus Potential waste heat consumer L 264 Energy supply by energy hub Adjusted operation 回 of energy hub L 136 Long-Term energy supply Effects of waste heat integration JÜLICH X Heat supply related CO, emissions of campus B 56 Mid-Term energy supply: Reducing operational ENERGY -23 % -82 % HUB costs by adjustments JÜLICH at actual energy hub operation Increased HPC waste heat supply Long-Term energy supply: · Main heat supply by HPC waste heat · Actual energy hub Mid-Term Long-Term Actual mainly supply cooling JÜLICH JÜLICH gas-fired combined cooling, By using higher share of renewable SUPERCOMPUTING Future operation

Forschungszentrum


CENTRE

electricity, the heat related emissions heating and power (CCHP) plant

Towards Sustainable HPC at JSC

Optimisation of Energy Usage

Campus Level: waste heat usage

Data Centre Level: free cooling

System Level: GPUs, Modular Architecture

Member of the Helmholtz Association

UWELS