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1. Introduction

• Understanding how nanoclusters (NCs) form is crucial to controlling their final 
morphology and catalytic reactivity

• Machine learning potentials (MLPs) offer high computational efficiency and can 
retain the accuracy of electronic structure theory methods

• However, machine learning potentials are often based on local descriptors and 
therefore often incapable of efficiently learning long-range interactions e.g.
dispersion (vdW) effects

• Is there a way to include long-range vdW effects with short-ranged machine 
learning potentials? 

4. Results

5. Conclusions

• We have developed a framework to combine short-range MLPs 
with long-range vdW effects

• Our method can be used for fast (pre-) relaxations of complex 
systems 

• Our method links Libmbd to the Atomic Simulation 
Environment, as well as SchNetPack

• Our method has also been tested on diverse organic molecules 
adsorbed onto metal surfaces

2. Solution
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• Learn short-range effects from density functional theory (DFT)
• Add long-range vdW effects using the open-source Libmbd library
• Connect both via Hirshfeld atoms-in-molecules partitioning

Check out our open-
access Python-based 

code on GitHub!

If you’re interested, you can read our 
paper in Digital Discovery now!

YES!

3. Training: Gold Nanoclusters on Diamond

This can be any 
dispersion correction! 
e.g. TS [4], vdWsurf [5], 
MBD [6], DFT-D3 [7]…

Method Computational Cost (kCPUh)

PBE+MBD 72.71

MLinit
+MBD + PBE+MBD 59.56

MLadapt1
+MBD + PBE+MBD 36.35

MLadapt2
+MBD + PBE+MBD 27.07

MLadapt3
+MBD + PBE+MBD 12.38

MLadapt3
+MBD 7.83 × 10−4

Fig. 1: Radial atom distributions for gold NCs after DFT- and ML-optimisation

MLinit. : Trained on initial training set
Adaptive sampling [8] done to generate data: MLinit.→MLadapt.1 →MLadapt.2 →MLadapt.3

Fig. 2: Comparison of optimisations using DFT and our method. S1–S3  are 
minima obtained from a basin-hopping algorithm [9,10] with MLinit.

+MBD

Table 1: Computational costs of a single geometry optimisation using various 
methods, as recorded with the ARCHER2 supercomputer
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