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1. Introduction 2. Solution

e Learn short-range effects from density functional theory (DFT)
 Add long-range vdW effects using the open-source Libmbd library
* Connect both via Hirshfeld atoms-in-molecules partitioning

Understanding how nanoclusters (NCs) form is crucial to controlling their final
morphology and catalytic reactivity

Machine learning potentials (MLPs) offer high computational efficiency and can
retain the accuracy of electronic structure theory methods

However, machine learning potentials are often based on local descriptors and
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therefore often incapable of efficiently learning long-range interactions e.g.

dispersion (vdW) effects
Is there a way to include long-range vdW effects with short-ranged machine

learning potentials? .
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3. Training: Gold Nanoclusters on Diamond 4. Results
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Fig. 1: Radial atom distributions for gold NCs after DFT- and ML-optimisation
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5. Conclusions
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We have developed a framework to combine short-range MLPs
with long-range vdW effects

Our method can be used for fast (pre-) relaxations of complex
systems

Our method links Libmbd to the Atomic Simulation
Environment, as well as SchNetPack
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Fig. 2: Comparison of optimisations using DFT and our method. S1-S3 are
minima obtained from a basin-hopping algorithm [9,10] with ML . *MBD
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Our method has also been tested on diverse organic molecules Method Computational Cost (kCPUh)
adsorbed onto metal surfaces PBE+M8D 72.71
ML, *MBD 4 PBE*MED 59.56
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Table 1: Computational costs of a single geometry optimisation using various
methods, as recorded with the ARCHER2 supercomputer
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