The PM Programming
Language

IMPLEMENTING NUMERICAL MODELS ON DISTRIBUTED HARDWARE

Tim Bellerby . |
School of Environmental Sciences HULL VIPER HPC | !
University of Hull, UK |

IRERERR'

M

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Research/HPC Software Divide

Python / Matlab / ...

FORTRAN/C/C++
+ MPI + OpenMP
+ OpenAcc/CUDA/...

@

UNIVERSITY CIUK 8th December 2023

PM Programming Language

New programming language and programming language implementation
designed for numerical modelling on distributed systems

Fortran/MPI/
OpenMP/
OpenACC

Fortran/MPI/
OpenMP

| 4
C/MP
OU/ “JJ\‘)/ JJ{) / Fortran ©0 0
Der -
PER Co-arrays
OpenAcce
T
UNIVERSITY CIUK 8th December 2023

OF HULL

An example model

Jacobi iterative solution to 2D heat
equation V2x=0

T

T

\

Xt Xi—q X T X

Xij = 4

Repeat until no further change

@

UNIVERSITY CIUK 8th December 2023

OF HULL

An example model

Jacobi iterative solution to 2D heat
equation V2x=0

— i
D

\

Xt Xi—q X T X
Xij = 4

Repeat until no further change

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Distribution

NODE NODE
A B
CEHE N
UNIVERSITY CIUK 8th December 2023

OF HULL

Coding models in PM

var out_array=darray(0.0,[0..MODEL_COLS+1,0..MODEL_ROWS+1])
for x in out_array {
over [0,]: x=1.0
until invar totdiff<TOL {
var diff=0.0
nhd [-1..1,-1..1] dx of x bounds EXCLUDED {
cell=(dx[-1,0]+dx[1,0]+dx[0,-1]+dx[0,1])/4.0
diff=(x-dx[0,0])**2
}
totdiff=sqrt(sum%(diff)/size(out_array))
}

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Coding models in PM

var out_array=darray(0.0,[0..MODEL_COLS+1,0..MODEL_ROWS+1])

for x in out_array { ‘&-~"‘-~__
over [0,]: x=1.0
until invar totdiff<TOL| Extensive, optional, compile-

var diff=0.0 time type inference
nhd [-1..1,-1..1] dX br oo oo L

cell=(dx[-1,0]+dx[1,0]+dx[0,-1]+dx[0,1])/4.0
diff=(x-dx[0,0])**2
}
totdiff=sgrt(sum%(diff)/size(out_array))
}

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Coding models in PM

var out_array=darray(0.0,[0..MODEL_COLS+1,0..MODEL_ROWS+1])
for x in out_array {
over [0,]: x=1.0

~<TOL {
Explicitly parallel
statements dx of x bounds EXCLUDED {
————rp——y—aix[1,0]+dx[0, -1]+dx[0,1]) /4.0
diff=(x-dx[0,0])**2
}
totdiff=sqrt(sum%(diff)/size(out_array))
}

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Coding models in PM

var out_array=darray(0.0,[0..MODEL_COLS+1,0..MODEL_ROWS+1])
for x in out_array {
over [0,]: x=1.0
until invar totdiff<TOL {
var diff=0.0
nhd [-1..1,-1..1] dx of x bounds EXCLUDED {
cell=(dx[-1,0]+dx[1,0]+dx[0,-1]+dx[0,1])/4.0
diff=(x-dx[0,0])**2

}
totdiff=sqrt(sum%(diff)/size(out_array))

} \ Operations that
communicate between

parallel strands

@

UNIVERSITY CIUK 8th December 2023

OF HULL

if x<0 {
var outer =1
______________ while outer < x {
1 inner = 2
(- - .
% o outer = outer + inner
© £
\ A
C @
UNIVERSITY CIUK 8th December 2023

OF HULL

Parallel Scope

A [J [J
for i in 1..4 {

L T for j in 1..3 {

S

- | -

o g

£ ?

Y o
T
UNIVERSITY CIUK 8t December 2023

OF HULL

Parallel Scope

:'|"'Ei""Ei"l": |for'iin1..4|{
E%” N “'”E |for'jin1..3|{

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Adding accelerators’

* Planned

@

UNIVERSITY CIUK 8th December 2023

Adding accelerators

@

UNIVERSITY CIUK 8th December 2023

Adding accelerators

@

UNIVERSITY CIUK 8th December 2023

Assigning nodes

=
for 1 in 1..4 {

for j = 1..8 {
- © e
}

8 NOUES o W | [S]
[| [|

@

h
UNIVERSITY CIUK 8t December 2023

Assigning nodes

W={2,4,4,6}
for i in 1..4 <<work=W>> {

for j in 1..W[i]*2 {

W 2 4 4 6
I N e N S S I
8 nodes T S W
1T 91 0
I s e I I P S R
G @
UNIVERSITY CIUK 8th December 2023

OF HULL

Assigning nodes

proc process node(node) {
// Check for and process leaves
par {
task LEFT <<work=node.left.nchildren>>:
process node(node.left)
task RIGHT <<work=node.right.nchildren>>:

process node(node.right)

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Distributions

10 array elements on 3 processors ---
Variable Block

BEEEEN U OEEaEE

Fixed Block (block=4)

123+ SNSRI e (10
Cyclic

B BN0E ONiE OSEE

Block cyclic (block=2)

G = BEONEEDE S

@

h
UNIVERSITY CIUK 8t December 2023

Distributions

2D block cyclic execution with 2x2 block size over 7x8 grid

for j in [1..7,1..8] <<dist = BLOCK CYCLIC(2)>> {
}

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Distributions

2D block cyclic array with block size of two on first dimension only over 7x8 grid

A = array (0.0,[1..7,1..8],[BLOCK_CYCLIC(2),])

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Synchronisation

var a = array(0.0,[1..N])
foriin 1..N{
sync a[i]=fool(i)

sync a[N+1-i]=a][i]

1 2 3 \
}
— —— == sync a[i]=foo(i)
@00
E— —— == sync a[N+1-i]=a[i]

UNIVERSITY CIUK 8th December 2023

OF HULL

Synchronisation

var success = false
foriin1..N{
if criterion_met(i) {
A: sync success=true
} elseif blocking_criterion_met(i) {
A: sync success=false

1 2 3 N
}
}
—— — —— == A:sync success=true
——— —— == A:sync success=false
@00
C@Eden

UNIVERSITY CIUK 8th December 2023

OF HULL

Implementation

DIMENSION ...
!OMP PARALLEL
DO ...
IF E1 THEN
S1
ELSE
S2
ENDIF
ENDDO
!OMP END PARALLEL
A= -> MPI
B=-> MPI
!OMP PARALLEL
DO ...
IF E1 THEN
S3
ELSE
S4
ENDIF
ENDDO
!OMP END PARALLEL

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Scheduling

Reorder instructions to:
* Minimise loop start/stops
* Minimise storage requirement
* Interleave computation and communication
* Merge synchronisation points

iSend A iRecv B
iRecv B iRecv D
Wait iSend A
Process B iSend C
iSend C Process E
iRecv D Wait

Wait ‘ Process B ‘
Process D Process D
Process E

@

UNIVERSITY CIUK 8th December 2023

OF HULL

PM Version 0.4

Formal language definition released under Creative
Commons Attribution 4.0 International License.

Language Implementation:

PM to FORTRAN/MPI compiler
Vector-virtual machine (intended for
development/debugging)

Both available under MIT Licence

CEHE N
UNIVERSITY CIUK 8th December 2023

OF HULL

PM Version 0.5

A small number of language additions
o Closures

o Sparse Arrays
o Interoperability with C/FORTRAN

Added backends
> FORTRAN/MPI/OpenMP
> FORTRAN/MPI/OpenMP/OpenAcc

Planned summer 2024.

@

UNIVERSITY CIUK 8th December 2023

OF HULL

Thank you for your attention

Questions? T.J.Bellerby@hull.ac.uk

Follow progress: www.pm-lang.org

X @pmlanguage

@

UNIVERSITY CIUK 8th December 2023

http://www.pm-lang.org/

	Slide 1: The PM Programming Language
	Slide 2: Research/HPC Software Divide
	Slide 3: PM Programming Language
	Slide 4: An example model
	Slide 5: An example model
	Slide 6: Distribution
	Slide 7: Coding models in PM
	Slide 8: Coding models in PM
	Slide 9: Coding models in PM
	Slide 10: Coding models in PM
	Slide 11: Scope
	Slide 12: Parallel Scope
	Slide 13: Parallel Scope
	Slide 14: Adding accelerators*
	Slide 15: Adding accelerators
	Slide 16: Adding accelerators
	Slide 17: Assigning nodes
	Slide 18: Assigning nodes
	Slide 19: Assigning nodes
	Slide 20: Distributions
	Slide 21: Distributions
	Slide 22: Distributions
	Slide 23: Synchronisation
	Slide 24: Synchronisation
	Slide 25: Implementation
	Slide 26: Scheduling
	Slide 27: PM Version 0.4
	Slide 28: PM Version 0.5
	Slide 29: Thank you for your attention

