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Research/HPC Software Divide

Python / Matlab / ...

FORTRAN/C/C++
+ MPI + OpenMP
+ OpenAcc/CUDA/...
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PM Programming Language

New programming language and programming language implementation
designed for numerical modelling on distributed systems
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OpenMP/
OpenACC
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An example model

Jacobi iterative solution to 2D heat
equation V2x=0
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Repeat until no further change
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Distribution
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Coding models in PM

var out_array=darray(0.0,[0..MODEL_COLS+1,0..MODEL_ROWS+1])
for x in out_array {
over [0,]: x=1.0
until invar totdiff<TOL {
var diff=0.0
nhd [-1..1,-1..1] dx of x bounds EXCLUDED {
cell=(dx[-1,0]+dx[1,0]+dx[0,-1]+dx[0,1])/4.0
diff=(x-dx[0,0])**2
}
totdiff=sqrt(sum%(diff)/size(out_array))
}
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Coding models in PM

var out_array=darray(0.0,[0..MODEL_COLS+1,0..MODEL_ROWS+1])

for x in out_array { ‘&-~"‘-~__
over [0,]: x=1.0
until invar totdiff<TOL| Extensive, optional, compile-

var diff=0.0 time type inference
nhd [-1..1,-1..1] dX br oo oo L

cell=(dx[-1,0]+dx[1,0]+dx[0,-1]+dx[0,1])/4.0
diff=(x-dx[0,0])**2
}
totdiff=sgrt(sum%(diff)/size(out_array))
}
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Coding models in PM

var out_array=darray(0.0,[0..MODEL_COLS+1,0..MODEL_ROWS+1])
for x in out_array {
over [0,]: x=1.0

~<TOL {
Explicitly parallel
statements dx of x bounds EXCLUDED {
————rp——y—aix[1,0]+dx[0, -1]+dx[0,1]) /4.0
diff=(x-dx[0,0])**2
}
totdiff=sqrt(sum%(diff)/size(out_array))
}
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Coding models in PM

var out_array=darray(0.0,[0..MODEL_COLS+1,0..MODEL_ROWS+1])
for x in out_array {
over [0,]: x=1.0
until invar totdiff<TOL {
var diff=0.0
nhd [-1..1,-1..1] dx of x bounds EXCLUDED {
cell=(dx[-1,0]+dx[1,0]+dx[0,-1]+dx[0,1])/4.0
diff=(x-dx[0,0])**2

}
totdiff=sqrt(sum%(diff)/size(out_array))

} \ Operations that
communicate between

parallel strands
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if x<0 {
var outer =1
______________ while outer < x {
1 inner = 2
(- - .
% o outer = outer + inner
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Parallel Scope
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for i in 1..4 {

L T for j in 1..3 {
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Parallel Scope

:'|"'Ei""Ei"l": |for'iin1..4|{
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Adding accelerators’

* Planned
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Adding accelerators
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Adding accelerators
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Assigning nodes

=
for 1 in 1..4 {

for j = 1..8 {
- © e
}
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Assigning nodes

W={2,4,4,6}
for i in 1..4 <<work=W>> {

for j in 1..W[i]*2 {

W 2 4 4 6
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Assigning nodes

proc process node(node) {
// Check for and process leaves
par {
task LEFT <<work=node.left.nchildren>>:
process node(node.left)
task RIGHT <<work=node.right.nchildren>>:

process node(node.right)
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Distributions

10 array elements on 3 processors ---
Variable Block
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Fixed Block (block=4)
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Distributions

2D block cyclic execution with 2x2 block size over 7x8 grid

for j in [1..7,1..8] <<dist = BLOCK CYCLIC(2)>> {
}
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Distributions

2D block cyclic array with block size of two on first dimension only over 7x8 grid

A = array (0.0,[1..7,1..8],[BLOCK_CYCLIC(2),])
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Synchronisation

var a = array(0.0,[1..N])
foriin 1..N{
sync a[i]=fool(i)

sync a[N+1-i]=a][i]

1 2 3 \
}
— —— == sync a[i]=foo(i)
@00
E— —— == sync a[N+1-i]=a[i]
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Synchronisation

var success = false
foriin1..N{
if criterion_met(i) {
A: sync success=true
} elseif blocking_criterion_met(i) {
A: sync success=false

1 2 3 N
}
}
—— — —— == A:sync success=true
——— —— == A:sync success=false
@00
C@Eden
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Implementation

DIMENSION ...
!OMP PARALLEL
DO ...
IF E1 THEN
S1
ELSE
S2
ENDIF
ENDDO
!OMP END PARALLEL
A= -> MPI
B=-> MPI
!OMP PARALLEL
DO ...
IF E1 THEN
S3
ELSE
S4
ENDIF
ENDDO
!OMP END PARALLEL
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Scheduling

Reorder instructions to:
* Minimise loop start/stops
* Minimise storage requirement
* Interleave computation and communication
* Merge synchronisation points

iSend A iRecv B
iRecv B iRecv D
Wait iSend A
Process B iSend C
iSend C Process E
iRecv D Wait

Wait ‘ Process B ‘
Process D Process D
Process E
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PM Version 0.4

Formal language definition released under Creative
Commons Attribution 4.0 International License.

Language Implementation:

PM to FORTRAN/MPI compiler
Vector-virtual machine (intended for
development/debugging)

Both available under MIT Licence
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PM Version 0.5

A small number of language additions
o Closures

o Sparse Arrays
o Interoperability with C/FORTRAN

Added backends
> FORTRAN/MPI/OpenMP
> FORTRAN/MPI/OpenMP/OpenAcc

Planned summer 2024.

@

UNIVERSITY CIUK 8th December 2023

OF HULL



Thank you for your attention

Questions? T.J.Bellerby@hull.ac.uk

Follow progress: www.pm-lang.org

X @pmlanguage
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http://www.pm-lang.org/
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