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The challenge

• Writing parallel code that can 
exploit present day 
supercomputers is extremely 
hard and requires highly 
specialist skills

• But this is going to get even more difficult 

as we move further into the exascale era

• It is no longer tenable to directly leverage 

serial languages and add in our own 

parallelism (e.g. MPI, CUDA, 

vectorisation etc)



Domain Specific Languages to the rescue!

• Raise the abstraction level so the 

programmer can provide a high 

level description of their algorithm 

that the compiler can then exploit to 

make tricky, low level decisions 

around parallelism

• Languages is a poor term, 

abstractions is far better



Breaking down silos

• The elephant in the room is that these are all heavily 

siloed and reinvent the wheel

• Requires significant development effort from the DSL designers

• Risk for users (e.g. will the DSL be maintained in the future?)

• Challenges supporting new architectures

There is therefore a sweet spot in the middle, where we 

gain the best of both worlds



Step in MLIR and LLVM

• LLVM is the ubiquitous compiler 
framework that has been around for 
over 20 years
• In addition to providing its own compilers, AMD, Intel and Arm compilers are all 

built on-top of LLVM, as is the Cray C/C++ compiler and AMD Xilinx’s FPGA HLS 
technology.

• MLIR was developed by Google in 2020 and since 2021 has been part of 
the main LLVM repository

• At its core MLIR is a framework for developing different types 

of Intermediate Representations (IR) at different levels

• Numerous (IR) dialects and transformations are provided 

which enables lowering between these

• Can add your own easily

• A big community has grown up

Front ends 

(e.g. Flang)

Back ends (e.g. 

CPU, GPU, 

FPGA)

LLVM IR



MLIR example lowering

• But MLIR is written in C++ and using specialist 
Tablegen configuration format for dialects, MLIR 
is esoteric and requires a steep learning curve
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xDSL: A Python toolkit for MLIR

• Python toolkit for MLIR that enables high productivity 

development of dialects and transformations

• Contains existing 
MLIR dialects & 
transformations and 
we are adding HPC 
focussed ones too

• Whole load of other 
things also, such as 
an MLIR interpreter 
and Python frontend



xDSL

• Makes experimenting with MLIR trivial

• Can go between xDSL and MLIR, 

leveraging transformations in both

• For our DSL purposes also means that a 

DSL can be a thin abstraction layer on-

top of xDSL which provides a wealth of 

dialects and transformations that will 

ultimately drive MLIR/LLVM
https://github.com/xdslproject/xdsl



CIUK Theme: Productive supercomputing

•Making HPC More Accessible
1. For HPC developers as they can more easily 

leverage supercomputers by using Domain 

Specific Languages

2. For DSL developers as these are now a thin 

abstraction layer atop a common, well 

supported, ecosystem



Domain Specific Compilation

• The Open Earth Compiler 

project from ETH Zurich used 

MLIR for domain specific 

compilation of stencil codes

• Successfully leveraged 

MLIR's qualities to leverage 

high-level information and 

reach high throughput on 

GPUs



First targets

• Climate simulation

• Discovers stencil code in 

Fortran

• Apply Domain Specific 

optimizations

• Generates MPI, OpenMP, 

OpenACC code

evito

• Seismic and fluid 

simulation, medical 

imagery

• Generates stencil code 

from Python PDEs

• Apply Domain Specific 

optimizations

• Generates MPI, OpenMP, 

OpenACC code



The broken silos

• Everything below the DSL layers is reinvented wheels



The sweet spot

Sharing infrastructure:

• Implementation and Maintenance cost is spread across projects

• Everyone gets all benefits

• Can still be driven by specific needs



The sweet spot
Our xDSL 

technology
Existing MLIR 

ecosystem



A flexible abstraction

 %input = stencil.load(%input_buffer) :
(!field<[0,7]xf64>)-> !temp<?xf64>

 %out = stencil.apply(%arg = %input : !temp<?xf64>)-
> !temp<?xf64> {

 %l = stencil.access %arg[-1] : f64
 %c = stencil.access %arg[0] : f64
 %r = stencil.access %arg[1] : f64

 // %v = Some arbitrary computation

 stencil.return %v : f64
 }

 stencil.store %out to %target([1]:[6])
 : !temp<?xf64> to !field<[0,128]xf64>



High-level distribution

Halo exchange is a simple idea, let's keep it simple



High-level distribution



Performance of PSyclone & Devito
GPU on Cirrus (V100)Single-node on ARCHER2 Strong scaling on ARCHER2

Higher is better, PSyclone top row & Devito bottom row



Integration with Flang: Beyond DSLs

• Our theory was that we can gain a 
performance improvement by combining 
with domain specific optimisations 
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• Performance falls short of 

Cray compiler for our stencil 

benchmarks (on a single core 

of ARCHER2, HPE Cray EX)



Integration with Flang: Beyond DSLs
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Multithreaded performance on ARCHER2
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GPU performance on Cirrus (V100)
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Distributed memory performance on ARCHER2



Auto-optimisation for new architectures

• Very different algorithm layout on FPGAs from the Von 
Neumann counterpart
• Requires significant experience, expertise and time to port codes 

to the architecture

• Using our existing infrastructure and domain specific abstractions, 
can we automatically optimise algorithms for FPGAs?

• So there is a single, unchanged, Von Neumann version driving them?

Field Programmable Gate 

Arrays (FPGAs)

RISC-V high core-count accelerator 

chip



Automatic optimisation for FPGAs

• AMD Xilinx already have an LLVM backend

• We added a new High Level Synthesis (HLS) MLIR dialect that 

then lowers to IR compatible with AMD Xilinx’s backend

• Developed transformations 
from the existing stencil 
dialect to this new HLS 
dialect
• Everything else remains the 

same in the compiler pass

• DSLs/languages don’t need 
any knowledge of the target 
architecture



Automatic optimisation for FPGAs

• On an AMD Xilinx U280 FPGA

• For PW advection, our approach is between 90 and 100 times faster than DaCE

• For tracer advection, our approach is between 14 and 21 times faster than DaCE
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Conclusions and next steps…

• We can’t keep reinventing the wheel when it comes to compiler 
infrastructure for DSLs

• LLVM and MLIR are a strong alternative for sharing

• We have developed the xDSL Python framework to lower the barrier to 
entry and offer key HPC components so that the ecosystems supports 
HPC workloads

• A lot of potential for bringing domain specific abstractions into 
existing languages, and we should be investing in Flang

• To date our focus has been on stencils, are now generalising 
this to other patterns



• https://xdsl.dev

• https://github.com/xdslproject/xdsl

• https://xdsl.zulipchat.com/

Emilien BauerNick Brown Anton Lydike

https://xdsl.dev/
https://github.com/xdslproject/xdsl
https://xdsl.zulipchat.com/
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