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Task Based Parallelism with 
OpenMP: A Case Study with 
DL_POLY_4

Strategic Theme 1

SCD will build and strengthen our existing capability of providing enabling computational 
expertise and e-infrastructure to support STFC in fulfilling its strategic goals: “world class 
research, world class innovation, and world class skills.”
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Our scientists are developing ways to speed-up codes and produce faster and more efficient processing. One 
of these is Task-Based Parallelism, a method for passing data between processes in which a program is split 
into a series of tasks, which are then assigned to multiple cores (processing units) all working in parallel until 
the calculations are completed. This method reduces the amount of computing time needed, and increases the 
time  scientists can spend on research.

Introduction 

When performing computations where load balancing 
is complex, dynamic load balancing is becoming
increasingly necessary. In this paper we examine 
one of these methods, Task-Based Parallelism. Many 
libraries implement Task-Based Parallelism, however 
in this paper we examine the OpenMP standard 
and implementations, and apply it to the Classical 
Molecular Dynamics code, DL_POLY_4, focusing on 
the two body force calculations that make up a large 
percentage of the compute in many simulation runs.  
Our results show reasonable performance using Open 
MP tasks, however some of the extensions available 
in other libraries such as OmpSs or StarPU may help 
with performance for problems similar to Molecular 
Dynamics, where avoiding race conditions between 
tasks can have a substantial scheduling overhead. 

Task-Based Parallelism is a method for shared memory
parallel programming in which a program is split into 
a series of tasks, which are picked up and executed 
by a set of cores in parallel until the computation 
is completed. To avoid concurrency issues, the 
dependencies between tasks need to be considered, i.e. 
if there are 2 tasks, A and B, where task A produces a 
result needed to compute task B, we say B is dependent 
on A, or A unlocks B. The tasks and their dependencies 
form a Directed Acyclic Graph (DAG). Task-Based 
Parallelism has two major advantages over traditional 
parallel processing techniques.
Firstly, since the tasks are assigned to the cores 
dynamically, the work is automatically load balanced. 
Secondly, the task dependencies avoid the need for 
explicit synchronisation between the cores. In the 
OpenMP 3.0, 4.0 and 4.5 specifications, Task-Based 
Paralellism has been added and extended, allowing a 
standardised way to use task-based parallelism.

DL_POLY_4 [1] is a classical molecular dynamics code
developed at Daresbury Laboratory, containing a large
number of time integrators and statistical ensembles. 
The code is MPI parallelised, and uses a simple 
domain decomposition to distribute work between 
the processors. In this paper we show how we used 
OpenMP tasks inside DL_POLY_4, and show the 
performance of the resulting code.

OpenMP added explicit tasks in the OpenMP 3.0 
specification, and expanded upon it in the 4.0 and 
4.5 specifications. As with many OpenMP directives, 

additional options should be added to the task directive 
to control the data sharing between threads. Tasks can 
be executed by any thread from the same (innermost) 
parallel region as the thread that encounters the task 
directive (known as the spawning thread). Each task’s 
execution is usually (but not always) deferred, but 
the standard specifies a variety of points at which 
tasks may be executed, known as task scheduling 
points. The most important of these for this work are: 
i) Immediately after generation of an explicit task; ii) 
Immediately after completion of a task region;  
iii) When encountering a taskyield directive; iv) 
Inside any implicit or explicit barrier. When a thread 
encounters a taskyield directive while inside a task 
region, the current task may be suspended and another 
task be executed instead. The depend clause allows the
programmer to specify the data requirements of tasks, 
as either in, out, or inout. The priority clause allows the
programmer to give each task an integer priority, and 
allows the scheduler to prioritise tasks of high priority.

OpenMP tasks in DL_POLY_4

To use Task-Based Parallelism in a scientific code, the
code needs to be able to be broken down into chunks 
of work which can be executed in parallel. To help 
achieve this in DL_POLY_4, we rewrote the algorithm 
that performs the pairwise force loops. DL_POLY_4 
uses the linked-cell method [2] [3] to build Verlet lists 
to compute pairwise interactions. While this method 
has been used with tasks in [4] it is not expected to give 
the best performance, as global Verlet lists have been 
shown to perform poorly on modern architectures [5]. 
Instead, we use the sorted cell-list algorithm [6], with 
the aim of improving to the pseudo-Verlet algorithm if 
successful [7].

The sorted cell-list algorithm involves organising the 
particles into cells of size equal to or greater than the 
cutoff radius (rc) in each dimension. Since DL_POLY_4 
divides the domain into equal sized domains with its 
domain decomposition, we split these domains into 
equal sized cells. The cells size must be bigger than rc 
in each direction but not too large as this will affect 
performance. The cells are then sorted in each of the 
axes between the centres of pairs of adjacent cells (in 
3 dimensions there are 26 axes). Gonnet et al. in [6] 
recommends sorting in 13 axes and then reversing the 
indices for the other 13 axes.
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In DL_POLY_4 however, halo cells may have different 
dimensions to the domain cells, so boundary cells 
(those adjacent to halo cells) need to be sorted in all 26 
axes. The cells can be sorted in parallel, though we did 
not use OpenMP tasks to parallelise this section of the 
code (due to issues with dependencies). The particles 
themselves are not sorted, but the indices of the sorted 
particle arrays are stored for each direction. Figure 1 
shows how the particles are sorted on the cell pair axis.

The traditional neighbour list method can be intensive
with respect to memory usage, as the neighbour access
may not be cache-friendly. The addition of the link-cell
does not help with this in DL_POLY_4, as the cells are 
just stored using a linked-list, as are the neighbour lists. 
The sorted-cell lists however involve a reordering of 
some of each particle’s data, such as the position and 
forces upon the particle, resulting in this information 
being located adjacent in memory, which may improve 
cache performance. Additionally, since particles in the 
same cell are likely to interact with similar particles 
from an adjacent cell, performing interactions by cell 
can improve cache reuse.

As the cells are at least as large as rc in each dimension,
we know all the neighbours of any particle in a cell
are contained either in the same cell or an adjacent 
cell. In DL_POLY_4 this means we have 3 types of 
tasks: Cellself tasks. These tasks compute the pairwise 
interactions between all particles within a single cell; 
Local cell-pair tasks. These tasks compute the pairwise 
interactions between all particles within a pair of non-
halo cells, and update the force on the particles in both 
cells; Nonlocal cell-pair tasks. These tasks compute 
the pairwise interactions between all particles within 
a non-halo cell and a halo cell, and update the force 
on the particles in the non-halo cell. In addition to 
specifying the tasks, we need to ensure that we avoid 
race conditions between tasks. Each task writes to the 
particle data associated with either one or two cells, so 
we need to avoid multiple tasks that write to the same 

cells being executed simultaneously. In OpenMP tasks, 
this can be done either manually, or automatically 
using the depend keyword. Avoiding race conditions 
using the depend keyword is straightforward. We add 
a depend (inout:cells), where cells is a list of the cell 
objects written to during each task. For a cell-self 
or non-local cell-pair task, this will be a single cell, 
whereas for the local cell-pair tasks it will contain 
both the cells required for the task. When using 
dependencies with OpenMP, any tasks that depend 
must be spawned by the same thread. The depend 
keyword adds dependencies between any tasks that 
share a variable (or array section) contained in any 
dependency clause (subject to certain rules). In our 
system this means dependencies between any tasks 
that write to the same cell. The first task to be spawned 
must be executed before any dependent tasks can be 
executed. This can lead to serialisation of the work (and 
thus poor parallel performance) for particle methods, as 
shown in [8]. 

In molecular dynamics the order in which the tasks are 
executed does not matter, at least within the pairwise 
interactions, but one wants to avoid race conditions.
As such, the dependencies currently available in 
OpenMP are too constraining. Instead, we want 
to use conflicts, as described in [9], also known as 
commutative dependencies in OmpSs [10] and StarPU 
[11]. It is possible to implement something similar using 
OpenMP 4.5 using taskyield and locks. We extend the 
cell type to contain an OpenMP lock. When executing 
a task, we attempt to lock any cells that are written 
to by the task. If successful, then the task executes as 
normal. If one of the locks can’t be obtained, we unlock 
any locks obtained and yield the task using the
taskyield OpenMP directive: 

If we just lock cell_i then cell_j, it is possible for deadlock 
to occur, where three threads are attemping to lock cells 
k, l, m and each locking a different cell first. This problem 
is known as the Dining Philosophers problem. Since 
each cell is assigned a unique integer ID, we attempt to 
lock the lower numbered cell first, which is the most 
straightforward solution to the problem. Removing 
dependencies also allows us to spawn the tasks in parallel, 
which may lead to a performance improvement.

rc

Figure 1: The figure shows two cells and the particles 
contained within, and the particles shown sorted 
along the axis between the cells. rc is the cutoff radius 
between the cells and Δ is a positive constant to 
enforce that each cell is at least rc.
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Results
We implemented 4 variants of the code for DL_POLY_4: 
i) A method using inout dependencies to control race 
conditions, with a single thread spawning all of the 
tasks; ii) A method using locks plus taskyield, with a 
single thread spawning all of the tasks; iii) A method 
using locks plus taskyield, using all threads to spawn 
tasks; iv) A method using locks plus taskyield with task 
priorities, using all threads to spawn tasks. We ran 
these variants on Intel Xeon Ivy Bridge
(E5-2697 v2) and Intel Xeon Phi Knight’s Landing (KNL
7210), with the Intel 17.2.050 and gcc 6.3 runtimes.
We used a simple testcase involving only van der Waals
forces, though tests with additional short-range 
electrostatic forces showed similar results.

The scaling and parallel efficiency of the parallel region
containing the tasks is shown in Figure 2 with the
Intel runtimes on both processors. The parallel region
achieves roughly 80% parallel efficiency when using 
the entirety of both processors, meaning we lose a 
significant amount of performance due to additional 
task overheads when compared to the serial version. 
On the KNL, we compare the performance with 
different numbers of threads per core, relative to a 
single core with a single thread. At low core counts, 
more threads perform better, however when using the 
entire KNL best performance 2 is achieved with two 

threads per core, and one thread per core performs 
better than using three or four.

To be able to see the performance of the parallel region
in more detail, we manually instrumented the code.
At the start of each task (or after the locks are obtained
if using taskyield) the code records the system time 
using omp_get_wtime(), and records it again at the end 
of the task region. This allows us to create a timeline 
showing how the tasks are executed. These are shown 
on the title page, the upper three graphs for taskyield 
with parallel spawning, taskyield with serial spawning 
and dependencies with the Intel runtime.

When using the OpenMP inout dependencies, the
amount of possible parallelism is reduced. Firstly, the
tasks have to be spawned by a single thread, however
most task frameworks struggle with parallel task 
creation. Secondly, the dependencies enforce an 
ordering on the tasks that need to be executed. This 
serialises certain sections of the work. Its possible 
that by changing the order in which tasks are created 
that the amount of parallelism will increase. However, 
we spent minimal time investigating this as the 
taskyield method performed so much better, and the 
commutative dependencies suggested in other runtimes 
seemed more ideal. 
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Figure 2: Speedup and Parallel Efficiency of the parallel region on Xeon Ivy Bridge and Knight’s Landing. Both lose 
significant performance due to the overheads associated with the OpenMP task framework. The results with 
Intel KNL are all shown relative to a single thread on a single core, which means when running with multiple 
threads per core we can achieve a parallel efficiency of above 1.
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With taskyield, the intel runtime significantly 
outperforms the gcc-6 runtime, shown on the title 
page last panel. This is due to the way that taskyield is 
implemented in the two runtimes. In the gcc runtime, 
the taskyield keyword is ignored, leading to tasks 
potentially being stuck in a while loop attempting to 
lock cells, rather than executing other available work. 
The intel runtime searches for a new task when finding 
a taskyield, while keeping the yielded task in the 
executing thread’s stack. 

In all examples there is significant “white” space 
throughout the computation, which cannot be entirely 
due to the methods used to avoid race conditions. 
When tasks are spawned by a single thread, that thread 
spends a large amount of time only spawning tasks to 
be executed. When tasks are spawned in parallel, we 
can assume that the overall time required to spawn 
the tasks must be at least as large, which may explain 
many of the white gaps throughout the computation. 
It is unclear what causes the threads to spawn tasks vs 
execute tasks, however this is implementation-defined. 
From the parallel spawning task plots with Intel and gcc 
it appears that the Intel runtime spawns relatively few 
tasks before threads begin executing them, while gcc 
waits until most of the tasks have been spawned before 
the majority of threads begin execution. Due to the 
difference in the taskyield implementation
between the two runtimes it is not possible to argue
which approach is better from these results, however
if the task creation involves memory allocation or other
serial operations it may suggest having some threads 
performing work while others generate tasks may help.


