
SCD Highlights 2016 - 2017 15

Task Based Parallelism with
OpenMP: A Case Study with
DL_POLY_4

Strategic Theme 1

SCD will build and strengthen our existing capability of providing enabling computational
expertise and e-infrastructure to support STFC in fulfilling its strategic goals: “world class
research, world class innovation, and world class skills.”

16 SCD Highlights 2016 - 2017

Our scientists are developing ways to speed-up codes and produce faster and more efficient processing. One
of these is Task-Based Parallelism, a method for passing data between processes in which a program is split
into a series of tasks, which are then assigned to multiple cores (processing units) all working in parallel until
the calculations are completed. This method reduces the amount of computing time needed, and increases the
time scientists can spend on research.

Introduction

When performing computations where load balancing
is complex, dynamic load balancing is becoming
increasingly necessary. In this paper we examine
one of these methods, Task-Based Parallelism. Many
libraries implement Task-Based Parallelism, however
in this paper we examine the OpenMP standard
and implementations, and apply it to the Classical
Molecular Dynamics code, DL_POLY_4, focusing on
the two body force calculations that make up a large
percentage of the compute in many simulation runs.
Our results show reasonable performance using Open
MP tasks, however some of the extensions available
in other libraries such as OmpSs or StarPU may help
with performance for problems similar to Molecular
Dynamics, where avoiding race conditions between
tasks can have a substantial scheduling overhead.

Task-Based Parallelism is a method for shared memory
parallel programming in which a program is split into
a series of tasks, which are picked up and executed
by a set of cores in parallel until the computation
is completed. To avoid concurrency issues, the
dependencies between tasks need to be considered, i.e.
if there are 2 tasks, A and B, where task A produces a
result needed to compute task B, we say B is dependent
on A, or A unlocks B. The tasks and their dependencies
form a Directed Acyclic Graph (DAG). Task-Based
Parallelism has two major advantages over traditional
parallel processing techniques.
Firstly, since the tasks are assigned to the cores
dynamically, the work is automatically load balanced.
Secondly, the task dependencies avoid the need for
explicit synchronisation between the cores. In the
OpenMP 3.0, 4.0 and 4.5 specifications, Task-Based
Paralellism has been added and extended, allowing a
standardised way to use task-based parallelism.

DL_POLY_4 [1] is a classical molecular dynamics code
developed at Daresbury Laboratory, containing a large
number of time integrators and statistical ensembles.
The code is MPI parallelised, and uses a simple
domain decomposition to distribute work between
the processors. In this paper we show how we used
OpenMP tasks inside DL_POLY_4, and show the
performance of the resulting code.

OpenMP added explicit tasks in the OpenMP 3.0
specification, and expanded upon it in the 4.0 and
4.5 specifications. As with many OpenMP directives,

additional options should be added to the task directive
to control the data sharing between threads. Tasks can
be executed by any thread from the same (innermost)
parallel region as the thread that encounters the task
directive (known as the spawning thread). Each task’s
execution is usually (but not always) deferred, but
the standard specifies a variety of points at which
tasks may be executed, known as task scheduling
points. The most important of these for this work are:
i) Immediately after generation of an explicit task; ii)
Immediately after completion of a task region;
iii) When encountering a taskyield directive; iv)
Inside any implicit or explicit barrier. When a thread
encounters a taskyield directive while inside a task
region, the current task may be suspended and another
task be executed instead. The depend clause allows the
programmer to specify the data requirements of tasks,
as either in, out, or inout. The priority clause allows the
programmer to give each task an integer priority, and
allows the scheduler to prioritise tasks of high priority.

OpenMP tasks in DL_POLY_4

To use Task-Based Parallelism in a scientific code, the
code needs to be able to be broken down into chunks
of work which can be executed in parallel. To help
achieve this in DL_POLY_4, we rewrote the algorithm
that performs the pairwise force loops. DL_POLY_4
uses the linked-cell method [2] [3] to build Verlet lists
to compute pairwise interactions. While this method
has been used with tasks in [4] it is not expected to give
the best performance, as global Verlet lists have been
shown to perform poorly on modern architectures [5].
Instead, we use the sorted cell-list algorithm [6], with
the aim of improving to the pseudo-Verlet algorithm if
successful [7].

The sorted cell-list algorithm involves organising the
particles into cells of size equal to or greater than the
cutoff radius (rc) in each dimension. Since DL_POLY_4
divides the domain into equal sized domains with its
domain decomposition, we split these domains into
equal sized cells. The cells size must be bigger than rc
in each direction but not too large as this will affect
performance. The cells are then sorted in each of the
axes between the centres of pairs of adjacent cells (in
3 dimensions there are 26 axes). Gonnet et al. in [6]
recommends sorting in 13 axes and then reversing the
indices for the other 13 axes.

SCD Highlights 2016 - 2017 17

In DL_POLY_4 however, halo cells may have different
dimensions to the domain cells, so boundary cells
(those adjacent to halo cells) need to be sorted in all 26
axes. The cells can be sorted in parallel, though we did
not use OpenMP tasks to parallelise this section of the
code (due to issues with dependencies). The particles
themselves are not sorted, but the indices of the sorted
particle arrays are stored for each direction. Figure 1
shows how the particles are sorted on the cell pair axis.

The traditional neighbour list method can be intensive
with respect to memory usage, as the neighbour access
may not be cache-friendly. The addition of the link-cell
does not help with this in DL_POLY_4, as the cells are
just stored using a linked-list, as are the neighbour lists.
The sorted-cell lists however involve a reordering of
some of each particle’s data, such as the position and
forces upon the particle, resulting in this information
being located adjacent in memory, which may improve
cache performance. Additionally, since particles in the
same cell are likely to interact with similar particles
from an adjacent cell, performing interactions by cell
can improve cache reuse.

As the cells are at least as large as rc in each dimension,
we know all the neighbours of any particle in a cell
are contained either in the same cell or an adjacent
cell. In DL_POLY_4 this means we have 3 types of
tasks: Cellself tasks. These tasks compute the pairwise
interactions between all particles within a single cell;
Local cell-pair tasks. These tasks compute the pairwise
interactions between all particles within a pair of non-
halo cells, and update the force on the particles in both
cells; Nonlocal cell-pair tasks. These tasks compute
the pairwise interactions between all particles within
a non-halo cell and a halo cell, and update the force
on the particles in the non-halo cell. In addition to
specifying the tasks, we need to ensure that we avoid
race conditions between tasks. Each task writes to the
particle data associated with either one or two cells, so
we need to avoid multiple tasks that write to the same

cells being executed simultaneously. In OpenMP tasks,
this can be done either manually, or automatically
using the depend keyword. Avoiding race conditions
using the depend keyword is straightforward. We add
a depend (inout:cells), where cells is a list of the cell
objects written to during each task. For a cell-self
or non-local cell-pair task, this will be a single cell,
whereas for the local cell-pair tasks it will contain
both the cells required for the task. When using
dependencies with OpenMP, any tasks that depend
must be spawned by the same thread. The depend
keyword adds dependencies between any tasks that
share a variable (or array section) contained in any
dependency clause (subject to certain rules). In our
system this means dependencies between any tasks
that write to the same cell. The first task to be spawned
must be executed before any dependent tasks can be
executed. This can lead to serialisation of the work (and
thus poor parallel performance) for particle methods, as
shown in [8].

In molecular dynamics the order in which the tasks are
executed does not matter, at least within the pairwise
interactions, but one wants to avoid race conditions.
As such, the dependencies currently available in
OpenMP are too constraining. Instead, we want
to use conflicts, as described in [9], also known as
commutative dependencies in OmpSs [10] and StarPU
[11]. It is possible to implement something similar using
OpenMP 4.5 using taskyield and locks. We extend the
cell type to contain an OpenMP lock. When executing
a task, we attempt to lock any cells that are written
to by the task. If successful, then the task executes as
normal. If one of the locks can’t be obtained, we unlock
any locks obtained and yield the task using the
taskyield OpenMP directive:

If we just lock cell_i then cell_j, it is possible for deadlock
to occur, where three threads are attemping to lock cells
k, l, m and each locking a different cell first. This problem
is known as the Dining Philosophers problem. Since
each cell is assigned a unique integer ID, we attempt to
lock the lower numbered cell first, which is the most
straightforward solution to the problem. Removing
dependencies also allows us to spawn the tasks in parallel,
which may lead to a performance improvement.

rc

Figure 1: The figure shows two cells and the particles
contained within, and the particles shown sorted
along the axis between the cells. rc is the cutoff radius
between the cells and Δ is a positive constant to
enforce that each cell is at least rc.

18 SCD Highlights 2016 - 2017

Results
We implemented 4 variants of the code for DL_POLY_4:
i) A method using inout dependencies to control race
conditions, with a single thread spawning all of the
tasks; ii) A method using locks plus taskyield, with a
single thread spawning all of the tasks; iii) A method
using locks plus taskyield, using all threads to spawn
tasks; iv) A method using locks plus taskyield with task
priorities, using all threads to spawn tasks. We ran
these variants on Intel Xeon Ivy Bridge
(E5-2697 v2) and Intel Xeon Phi Knight’s Landing (KNL
7210), with the Intel 17.2.050 and gcc 6.3 runtimes.
We used a simple testcase involving only van der Waals
forces, though tests with additional short-range
electrostatic forces showed similar results.

The scaling and parallel efficiency of the parallel region
containing the tasks is shown in Figure 2 with the
Intel runtimes on both processors. The parallel region
achieves roughly 80% parallel efficiency when using
the entirety of both processors, meaning we lose a
significant amount of performance due to additional
task overheads when compared to the serial version.
On the KNL, we compare the performance with
different numbers of threads per core, relative to a
single core with a single thread. At low core counts,
more threads perform better, however when using the
entire KNL best performance 2 is achieved with two

threads per core, and one thread per core performs
better than using three or four.

To be able to see the performance of the parallel region
in more detail, we manually instrumented the code.
At the start of each task (or after the locks are obtained
if using taskyield) the code records the system time
using omp_get_wtime(), and records it again at the end
of the task region. This allows us to create a timeline
showing how the tasks are executed. These are shown
on the title page, the upper three graphs for taskyield
with parallel spawning, taskyield with serial spawning
and dependencies with the Intel runtime.

When using the OpenMP inout dependencies, the
amount of possible parallelism is reduced. Firstly, the
tasks have to be spawned by a single thread, however
most task frameworks struggle with parallel task
creation. Secondly, the dependencies enforce an
ordering on the tasks that need to be executed. This
serialises certain sections of the work. Its possible
that by changing the order in which tasks are created
that the amount of parallelism will increase. However,
we spent minimal time investigating this as the
taskyield method performed so much better, and the
commutative dependencies suggested in other runtimes
seemed more ideal.

Cores
51 01 52 0

Sp
ee

du
p

0

5

10

15

20

Cores
246 81 01 21 41 61 82 02 22 4

Pa
ra

lle
l E

ffi
ci

en
cy

0

0.2

0.4

0.6

0.8

1

1.2

w/ Intel
w/ gcc

Cores
10 20 30 40 50 60

Sp
ee

du
p

0

10

20

30

40

50

60

Cores
10 20 30 40 50 60

Pa
ra

lle
l E

ffi
ci

en
cy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 thread
2 threads
3 threads
4 threads

Figure 2: Speedup and Parallel Efficiency of the parallel region on Xeon Ivy Bridge and Knight’s Landing. Both lose
significant performance due to the overheads associated with the OpenMP task framework. The results with
Intel KNL are all shown relative to a single thread on a single core, which means when running with multiple
threads per core we can achieve a parallel efficiency of above 1.

SCD Highlights 2016 - 2017 19

Authors
A. B.G Chalk, A. M.Elena, STFC Daresbury Laboratory

References
[1] 	 Ilian T Todorov, William Smith, Kostya Trachenko, and Martin T Dove. DL_POLY_3: new dimensions in molecular dynamics

simulations via massive parallelism. Journal of Materials Chemistry, 16(20):1911–1918, 2006.
[2] �	 B Quentrec and C Brot. New method for searching for neighbors in molecular dynamics computations. Journal of Computational

Physics, 13(3):430–432, 1973.
[3] 	� Gary S Grest, Burkhard Dünweg, and Kurt Kremer. Vectorized link cell fortran code for molecular dynamics simulations for a large

number of particles. Computer Physics Communications, 55(3):269–285, 1989.
[4] 	� Ralf Meyer. Efficient parallelization of molecular dynamics simulations with short-ranged forces. Journal of Physics: Conference

Series, 540(1):012006, 2014.
[5] 	 Pedro Gonnet. Pairwise verlet lists: Combining cell lists and verlet lists to improve memory locality and parallelism. Journal of

computational chemistry, 33(1):76–81, 2012.
[6] 	 Pedro Gonnet. A simple algorithm to accelerate the computation of non-bonded interactions in cell-based molecular dynamics

simulations. Journal of Computational Chemistry, 28(2):570–573, 2007.
[7] 	 Pedro Gonnet. Pseudo-verlet lists: a new, compact neighbour list representation. Molecular Simulation, 39(9):721–727, 2013.
[8] �	 Hatem Ltaief and Rio Yokota. Data-driven execution of fast multipole methods. Concurrency and Computation: Practice and

Experience, 26(11):1935–1946, 2014.
[9] 	� Pedro Gonnet, Matthieu Schaller, Tom Theuns, and Aidan BG Chalk. Swift: Fast algorithms for multi-resolution sph on multi-core

architectures. arXiv preprint arXiv:1309.3783, 2013.
[10] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Martinell, Xavier Martorell, and Judit Planas. OmpSs: a proposal

for programming heterogeneous multi-core architectures. Parallel Processing Letters, 21(02):173–193, 2011.
[11] �Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. StarPU: a unified platform for task scheduling

on heterogeneous multicore architectures. Concurrency and Computation: Practice and Experience, 23(2):187–198, 2011.

With taskyield, the intel runtime significantly
outperforms the gcc-6 runtime, shown on the title
page last panel. This is due to the way that taskyield is
implemented in the two runtimes. In the gcc runtime,
the taskyield keyword is ignored, leading to tasks
potentially being stuck in a while loop attempting to
lock cells, rather than executing other available work.
The intel runtime searches for a new task when finding
a taskyield, while keeping the yielded task in the
executing thread’s stack.

In all examples there is significant “white” space
throughout the computation, which cannot be entirely
due to the methods used to avoid race conditions.
When tasks are spawned by a single thread, that thread
spends a large amount of time only spawning tasks to
be executed. When tasks are spawned in parallel, we
can assume that the overall time required to spawn
the tasks must be at least as large, which may explain
many of the white gaps throughout the computation.
It is unclear what causes the threads to spawn tasks vs
execute tasks, however this is implementation-defined.
From the parallel spawning task plots with Intel and gcc
it appears that the Intel runtime spawns relatively few
tasks before threads begin executing them, while gcc
waits until most of the tasks have been spawned before
the majority of threads begin execution. Due to the
difference in the taskyield implementation
between the two runtimes it is not possible to argue
which approach is better from these results, however
if the task creation involves memory allocation or other
serial operations it may suggest having some threads
performing work while others generate tasks may help.

