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Abstract 

These notes (from my boyhood in Bristol) use multiple scattering theory (MST) to solve the perfect 

lattice and single impurity problems (see [1], [2]).  I also give the corresponding derivations in tight-

binding theory (TBT) and show how similar in structure they are to MST.  This connection was 

suggested by Shiba [3] and Anderson’s paper [4] on magnetic impurities.  The classic TBT treatment 

of the impurity problem is by Slater and Koster [5]. 
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1 Fundamental equations 
The MST problem refers to a system of non-overlapping spherical scatterers located at points  iR  

and described by t-matrices  ,i Lt   - note that  ,L l m .  The scattering path matrix is given by  

          , , ,ij kj
LL i L i L LL ik L L

L k i

t t G         

 

  R   (1.1) 

with ij i j R R R .  For what follows we don’t need to display the full angular momentum indices  

and energy variables – only the site indices come into the development.  So we’ll use an obvious  

simplified notation and rewrite (1.1) as 

 ij ik kj
i ij i

k i

t t G  


    (1.2) 

When put on the energy shell, ijG  becomes the real-space structure constant matrix [6] which acts 

as a propagator linking sites i and j.  This is why the term k i  is excluded from the sum in (1.2); all 

repeated scatterings from the potential at site i are included in it .  Indeed ijG  depends on the 

Hankel functions  l i jh R R [6] and these are infinite when i j .  Therefore, to simplify the 

formulae, we modify the structure constants such that the site diagonal term is defined to be zero 

[6] and then we can write  

 ij ik kj
i ij i

k

t t G      (1.3) 

in which ikG is understood to mean this modified structure constant matrix. 

The TBT treatment, on the other hand, starts with the Hamiltonian 

 † †
i i i ij i j

i ij

a a T a a     (1.4) 

where i is a single-site energy1, ijT is the hopping integral between sites i  and j  and †
ia  is the 

creation operator for the Wannier state i   on site i .  The Green’s function, or resolvent, is, as 

usual, 

    
1

 


    (1.5) 

and in the Wannier state representation 

      
1 1 †0 0ij i jG i j a a  
 

      (1.6) 

0 being the vacuum.  The basic method of solution is to work with the set of equations 

                                                           
1 We could/should label the single-site energy by atomic quantum numbers, in particular the angular 

momentum.  Then i would become a vector i  and ijT a matrix ijT  in these labels.  However, in the spirit of 

(1.2), we will suppress these labels in TBT and focus only on site labels. 
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    kj ij
k

i k G      (1.7) 

This is how Anderson [4] did the impurity problem.  Indeed, the perfect lattice is easily treated using 

the lattice Fourier transform of (1.7).  Here, however, I’m going to write it in a different way, one in 

which the mathematical connection with MST is clear. 

First, define the following operators 

 

  †

†

,

i i i
i

ij i j
i j

a a

T a a

   






  (1.8) 

Hence, omitting the energy arguments, we can write the Green’s function operator (1.5) as 

    
11 1 11
        (1.9) 

and this in turn can be written 

 
1 1     (1.10) 

This already has the look of a Dyson equation, and resemblance becomes closer when we put it in a 

site representation: 

    
1

11 †
i i i i ij i ij

i

i j i a a j      



  
     

 
 l   (1.11) 

The quantity 

  1 1
i

i


 

 


l   (1.12) 

is called (by Shiba [3]) the locator of site i .  Further, 

 †

,
kl k l ij

k l

i j i T a a j T    (1.13) 

Equation (1.10) thus reads, in a site representation, 

 1 1
ij i ij i ik kj

k

G T G   l l   (1.14) 

This is our “fundamental” equation of TBT.  A glance at (1.3) reveals the equivalence, as regards the 

site indexing, to MST.  For convenience, here’s a translation table between the two approaches: 

MST TBT 
  G  
G   T  
t  1l  
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2 The perfect lattice 
Consider first the MST approach to band theory, the KKR method.  The set of vectors  iR now form 

a periodic lattice in which (in the simplest case) each site has t-matrix t ie it t i  .  The scattering 

path matrix (1.3) is thus given by 

 ij ik kj
ij

k

t t G       (2.1) 

We exploit translational invariance by using lattice Fourier transforms: 

 

   

   

1

1

i j

i j

iij

BZ

iij

BZ

d e

G d e G

 
 

 









q R R

q R R

q q

q q
    (2.2) 

The integrals are carried out over the Brillouin zone whose volume is  .  Equation (2.1) is then 

solved to give 

         
11t tG t G 


   q q q q   

The scattering path matrix for the perfect lattice is thus, in all its variables and indices, 

         
11 1 ,i jiij

LL

BZ LL

d e t G   
  





  
  

q R R
q q   (2.3) 

The KKR condition is now easily deduced.  We seek poles of the Green’s function, which are also the 

poles of the T-matrix and thus of the  , q .  But by the rules of matrix inversion 

 

      

    
   

11

1

1

, ,

,

,

LL
LL

l LL LL

t G

cofactor of t G

t G

   

  

 









 



  
  

 
 



q q

q

q

  

Hence, the eigenvalues of the perfect lattice, ie the bands, are given by the zeros of the so-called 

KKR determinant: 

    1 , 0t G   q   (2.4) 

In TBT, the equivalent perfect lattice is defined by a single site energy a , the same on all sites, and 

hopping integrals which depend only on ij i j R R R .  Hence, from (1.12) 

 

 
 

     

1 1

1

1

i j

i

a

i

ij i j

BZ

i

T T d e T


 

 

 

  


   
q R R

R R q q

l l
  

and from (1.13) we can again introduce lattice Fourier transforms 
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     

       

1

1, ,

i j

i j

i

ij i j

BZ

i

ij i j

BZ

T T d e T

G G d e G  

 

 

  

  





q R R

q R R

R R q q

R R q q
  

Hence the correspondences noted in section 1, together with (2.3), yield 

  
       

1 1
,

a

G
T T


  

 
  

q
q ql

  

The TB bands are obviously given by 

    a T  q q   (2.5) 

which is the analogue of (2.4)2.  For example, a [1D] chain of lattice spacing a  with nearest-

neighbour hopping, ie  , 1 , 1ij i j i jT T     ,  gives    2 cosT q T qa .  Thus 

   2 cosaq T qa   which is the familiar result from elementary TBT. 

 

3 The single impurity 
This problem is defined by a lattice  iR in which each site has an A atom, except site i which has a B 

atom.  In MST, then, 

  j A A B jit t t t      (2.6) 

The Green’s function at the impurity site is determined by the i-site-diagonal element of  , which is 

given by (1.3) and (2.6) as 

 ii ik ki
B B

k

t t G      

But it’s obvious that for j i   

 ji jk ki
B

k

G t 
 

  
 
   

so that  

 
,

ii ij jk ki
B B B

j k

t t G G t 
 

   
 
   (2.7) 

This can be written as follows: 

                                                           
2 Recall footnote 1: if we retained the atomic quantum numbers (angular momenta etc) on the site energies 

then (2.5) for the band energies would be replaced by the determinantal condition     0.a   q T q  
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,

ii i
B B B

i ij jk ki

j k

t t F t

F G G





 


  (2.8) 

iF  represents the contribution from all paths starting and ending at site i.   Call i
nf  the sum over all 

paths with n steps, so that 

 i i
n

n

F f   

The corresponding quantity for the perfect, pure A, lattice, having an A atom on site i, is 

 0 0 0,
i ij jk ki i

n
jk n

F G G f     

Here the subscript 0 denotes the perfect lattice.  Now comes the trick.  Let 0,
i

nf  be the sum over all 

paths of length n which avoid site i as an intermediate step.  Then, of all the paths which contribute 

to i
nf , those which avoid site i altogether are included in 0,

i
nf , while the rest hit site I for the first 

time at the mth step ( )m n , pick up a scattering Bt , and move off again, possibly to return later in 

the path.  Hence 

 0, 0,

n
i i i i

n n m B n m
m

f f f t f     

and if 0 0,
i i

n
n

F f  we find 

 0 0
i i i i

BF F F t F    (2.9) 

Similarly, for the corresponding paths, 0,
i

nf , of the pure A lattice, we have 

 0, 0, 0, 0,

n
i i i i

n n m A n m
m

f f f t f     

and 

 0 0 0 0
i i i i

AF F F t F    (2.10) 

Now do some careful matrix algebra.  Write, using (2.8), 

 
0 0

ii i
B B B B

ii i
A A A A

t t F t

t t F t

 

 

  

  
  (2.11) 

From (2.9) and (2.10), we have 

 

1

0 0

1

0 0 0

1

1

i i i
B

i i i
A

F F t F

F F t F





   

   

  

Thus 
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1 1

0 0 0

1

0

1 1

1

i i i
B B B B B B B

i
A A A

t t F t F t t F t

t F t





 



          

   

  

Therefore 

 1 1 1 1
0
i

B B A At F t          

This allows us to write B  in terms of 0
ii

A   which, in turn, is just the site-diagonal element of the 

pure A lattice  matrix and is therefore given by the result (2.3) of section 2.  Thus the exact solution 

to the MST impurity problem is 

  
1

1 11B A B A At t  


    
    (2.12) 

where 

       
11 1 ,A ALL

BZ LL

d t G   


 




        q q   (2.13) 

 

The corresponding model TBT impurity system has site energies A  everywhere on the periodic 

lattice except site i which has site energy B .  If we take the hopping integrals ijT  to be the same as 

in the pure A lattice, then the problem is specified by the locators 

 
 

j j

j A B A ji

 

    

 

  

l
 

or 

 
 

 ( )

j A B A ji

A B A B



 

  

 

l l l l

l
   

Substituting this into the fundamental equation (1.14) gives 

 
1 1 1

B ii B B ij jk ki B
jk

G G T G T   
    

 
l l l   

with a corresponding expression for the pure A lattice.  This is just the analogue of the MST 

expression (2.7).  The whole tricky argument about paths carries through, and we can leap to the 

answer: 

 

 

     

1

1
1

1B A B A A

A A

BZ

G G G

G d T 






    

    q q

l l

l
  (2.14) 
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Finally, note that (2.12) is at the heart of the KKRCPA method [1] for random substitutional alloys, 

and (2.14) is a key result for the Anderson model [4].  I wrote out this relatively complicated 

derivation, mainly as an example of the “combinatorial” approach (scattering path classification and 

counting) pioneered by, for example, John Beeby [2].  In my “Multiple Scattering Theory Primer” [6], 

using the general treatment of reference systems, I give a much simpler and shorter derivation of 

the impurity result in MST, which applies to the entire impurity  matrix (not just its impurity site-

diagonal component ii ). 
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